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Topic 1

Problem 1.1 Streamlines

Streamlines are curves which are instantaneously tangent to the velocity vector u of the flow,
i.e. dr

ds
‖ u, or

dr

ds
× u = 0
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1 1.1 Streamlines

for some parametrisation s of curves. If the flows are steady, we write the continuity equation
as

∇ · (ρu) = 0

(a)

A flow is specified by

u = aφ̂+ br̂ =

ba
0


in cylindrical coordinates, so the streamlines satisfy −a dz

b dz
a dr − b dφ

 = 0

=⇒ dz = 0 planar flow in x-y plane

dr

dφ
=
b

a

r =
b

a
(φ− φ0)

The density, if cylindrically symmetric, satisfies

1

r

∂(rρb)

∂r
= 0

ρ ∝ 1

r

(b)

Another flow is specified by

u = aR2φ̂+ bR2r̂ =

ba
0


so the streamlines satisfy

R2

 −a dz
b dz

a dr − b dφ

 = 0

if R 6= 0 =⇒ dz = 0 planar flow in x-y plane
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1 1.2 Steady flow

dr

dφ
=
b

a
as above

r =
b

a
(φ− φ0)

The density, if cylindrically symmetric, satisfies

1

r

∂(rρbr2)

∂r
= 0

ρ ∝ 1

r3

Both flows generate planar spiral streamlines. The difference is that the second flow
allows an “axial” streamline along the z-axis.

Problem 1.2 Steady flow

Show that for a steady flow with ∇ · u = 0, the density ρ is constant along the streamlines.
Need ρ be constant throughout the medium?

For a steady flow (∂ρ
∂t

= 0), the continuity equation in Eulerian form reads

dρ

dt
+∇ · (ρu) = 0

u · ∇ρ+ ρ∇ · u︸ ︷︷ ︸
0

= 0

u · ∇ρ = 0

The directional derivative of ρ along the tangent of any streamline, with dr
ds
‖ u, satisfies

dρ

ds
=

dr

ds
· ∇ρ ∝ u · ∇ρ = 0

Therefore density is constant along all streamlines. However, it may still vary throughout the
medium. A trivial example is a fluid which consists of multiple layers of static components
of different densities which never interact with each other.

Problem 1.3 Transversal flow around a disc

Streamlines satisfy
dr× u = 0
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1 1.3 Transversal flow around a disc

Given

u = U

(1 +
a2

R2

)
x̂− 2a2x

R3
R̂


where R2 = x2 + y2, so u is in the x-y plane. In this case, the streamlines all reside in planes
as well. Using

R̂ = x̂ cosφ+ ŷ sinφ

φ̂ = −x̂ sinφ+ ŷ cosφ

we realise
x̂ = R̂ cosφ− φ̂ sinφ

and go back to the streamline equation

 dR
R dφ

0

× U

(

1 + a2

R2

)
cosφ− 2a2 cosφ

R2

− sinφ
(

1 + a2

R2

)
0

 = 0

U

(
1− a2

R2

)
cosφ+ U

(
dR

dφ
+
a2

R2

dR

dφ

)
sinφ = 0

d

dφ

U(1− a2

R2

)
sinφ

 = 0

The term in square brackets is therefore a constant along the streamline parametrised by φ.

a

rough plot of streamlines

This fluid velocity is a transverse laminar flow in +x direction streaked by a disc (or cylinder)
of radius a.
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1 1.4 Radioactive dye

Problem 1.4 Radioactive dye

A steady 2D flow is described by ux = 2
x
, uy = 1. The streamlines satisfy

2

x

dy

dx
− 1 = 0

dy

dx
=
x

2

y =
x2

4
+ yinit

The steady surface density Σ(x, y) satisfies continuity equation

∇2D · (Σu) = 0

If Σ can be expressed as Σ = σx(x)σy(y)

1

σx

d

dx
(σxux) = − 1

σy

d

dy

(
σyuy

)
= −a = const.

σy = exp(ay)

σx = Σ0
x

2
exp

(
−ax

2

4

)

=⇒ Σ =
Σ0

2
x exp

a(y − x2

4

)
The density along a streamline can be alternatively expressed as

Σ =
Σ0

2
x exp(ayinit)

where yinit is the y-intercept when the streamline passes x = 0.

A radioactive inkblot is introduced in a small patch at (x0, y0). The nuclei decay such that
their number per unit mass of sample is Q = Q0e

−t. Consequently the number per
unit area, as the sample travels along the streakline (which coincides with the streamline for
this steady flow) is

N = Q0e
−tΣ0

2
x exp

[
a(y0 −

x2
0

4
)

]

N = Q0
Σ0

2
exp

[
a(y0 −

x2
0

4
)

]
︸ ︷︷ ︸

constant N0

e−tx
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1 1.5 Curlless flow

At a maximum number per area along the streakline,

1

N0

dN

dt
= −e−tx+ e−tux = 0(
x

2
− x
)
e−t = 0

x = ±
√

2

Since sgn(ux) = sgn(x), the fluid elements always flow away from x = 0. In order that
|x| =

√
2 is passed, |x0| <

√
2. The maximum is located at

(x, y) =
(√

2, y0 − x2
0 + 2

)

Problem 1.5 Curlless flow

(a) [
b× (∇× b)

]
i

= εijkbjεkmn∂mbn[
b× (∇× b)

]
i

=
(
δimδjn − δinδjm

)
bj∂mbn[

b× (∇× b)
]
i

= bj∂ibj − bjδjbi

b× (∇× b) =
1

2
∇(b · b)− (b · ∇)b

(b) [
∇× (∇a)

]
i

= εijk︸︷︷︸
antisymmetric

∂j∂k︸︷︷︸
symmetric

a

∇× (∇a) = 0

(c) [
∇× (ab)

]
i

= εijk∂j(abk)[
∇× (ab)

]
i

= aεijk∂jbk + εijk
(
∂ja
)
bk

∇× (ab) = a∇× b+ (∇a)× b

g is a conservative field. Using all of the above in the curl of the momentum equation,
and assuming a barotropic equation of state p = p(ρ) =⇒ ∇p = dp

dρ
∇ρ

∇× (−∇p+ ρg) =∇×
(
ρ

Du

Dt

)
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1 1.6 Self-gravitating slab

ρ∇×
(
∂u

∂t
+ (u · ∇)u

)
+ (∇ρ)× Du

Dt
=∇ρ× g

ρ2∇×
(
∂u

∂t
+∇

(
1

2
u2

)
− u×∇× u

)
+ ρ(∇ρ)× Du

Dt
=∇ρ×

(
ρ

Du

Dt
+∇p(ρ)

)
ρ2∇×

(
∂u

∂t
− u×∇× u

)
=∇ρ× dp

dρ
∇ρ

∂

∂t
∇× u =∇× (u×∇× u)

∇× u = 0 is a stationary solution of the differential equation for the field ∇× u. Thence
the fluid velocity will remain curlless if it started in this state.

Problem 1.6 Self-gravitating slab

A static infinite slab of incompressible self-gravitating fluid of density ρ occupies the region
|z| < a. Find the gravitational field everywhere and the pressure distribution within the slab.

The gravitational field has the same symmetries as ρ. Poisson’s equation can be integrated
to get

∇ · (∇Ψ) = 4πGρ(r)∮
dS · (∇Ψ) = 4πG

∫
encl

dV ρ(r)

2A|∇Ψ| = 4πGρ

{
2Az |z| < a

2Aa |z| ≥ a

−∇Ψ = −4πGρ

{
z |z| < a

aẑ |z| ≥ a

where we constructed an auxiliary surface with two faces of area A parallel to x-y plane,
enclosing volume 2zA.

The pressure distribution can be found via the equation of hydrostatic equilibrium

1

ρ
∇p = −∇Ψ

Outside the slab where ρ = 0, the pressure remains constantly 0. Within the slab,

∇p = −4πGρ2z

p = 2πGρ2
(
a2 − z2

)
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1 1.7 Temperature of stellar wind

If a galactic disk is approximated by a uniform density slab with density 1 × 10−18 kg m−3

and a = 1× 1018 m, determine the velocity of a star at the midplane if it starts from rest at
z = a, and the period of its oscillation.

The equation of motion of the star is

−4πGρz =
d2r

dt2

with initial condition z = a, v = 0. Therefore it undergoes SHM with frequency

ω =
√

4πGρ

Velocity amplitude is simply

vmid = max(v) = ωa =
√

4πGρa

vmid = max(v) = 2.9× 104 m s−1

and period can be found by

T =
2π

ω
T = 2.17× 1014 s

Problem 1.7 Temperature of stellar wind

For an ideal monatomic gas

E = ρ

(
1

2
u2 + Ψ +

3p

2ρ

)
and

p =
kB
µmp

ρT = DρT

A steady flow sets ∂
∂t
→ 0, so the momentum and continuity equations read

ρ(u · ∇)u = −∇p+ ρg ∇ · (ρu) = 0

For an adiabatic flow, Q̇cool = 0, the energy equation reads

∇ ·
[
(E + p)u

]
= 0

Finally, spherical symmetry sets u, g, and ∇ to purely radial.

1

r2

d

dr

(
r2ρu

)
= 0 =⇒ ρ =

ρ0u0a
2

ur2

9



1 1.7 Temperature of stellar wind

ρu
du

dr
+

dDρT

dr
+ ρ

dΨ

dr
= 0 =⇒ ρ

d

dr

[
u2

2
+DT + Ψ

]
+DT

dρ

dr
= 0

1

r2

d

dr

ρur2

(
u2

2
+ Ψ +

5p

2ρ

) = 0 =⇒ d

dr

[
u2

2
+ Ψ +

5DT

2

]
= 0

Subtract third line ×ρ from second line, a 4th-order polynomial of T can be found.

DT
dρ

dr
= ρ

3D

2

dT

dr
1

ρ

dρ

dr
=

3

2T

dT

dr

ρ

ρ0

=

(
T

T0

) 3
2

u2
0a

4T 3
0

2r4T 3
+

5D

2
T = F −Ψ

If the star’s gravitational field dominates over the self-gravitation and pressure of the fluid,
the 5DT/2 pressure term can be neglected

F =
u2

0

2
− GM

a

T = T0

u2
0a

4

2r4

[
GM

(
1

r
− 1

a

)
+
u2

0

2

]−1


1
3

If u0 is just the gravitational escape velocity, the constant of motion F would be zero. In this
regime T will decay like 1

r
, until eventually F is not negligible, i.e.

r � GM

F
: T ∼ r−1

r � GM

F
: T ∼ r−4/3

The general polynomial satisfied by T is

u2
0a

4T 3
0

2r4T 3
+

5D

2
T = F −Ψ

In the short r regime, both terms on the left hand side decay like 1
r
. In the long r regime, the

first term remains constant and the second term decays. Therefore, if pressure is negligible
compared to kinetic energy of stellar wind near a, it will remain so throughout the wind.
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1 1.8

Problem 1.8

A particle is released at rest at radius R0 from the centre of a body mass M .

(a)

(i) The body is a point mass.

(ii) The body is a uniform sphere of radius R0.

Either way the initial gravitational field, thence acceleration g, is determined by Poisson’s
equation

∇2Ψ = 4πGρ

−gS = 4πGM

g = −GM
R2

0

where SR0 is the area of the surface which encloses the spherical volume of radius R0.

(b)

(i) The body is a point mass.

−gSr = 4πGM

g = v
dv

dr
= −GM

r2

1

2
v2 = GM

(
1

r
− 1

R0

)
dr

dt
= −
√

2GM

√
1

r
− 1

R0∫ 0

R0

√
rR0

R0 − r
dr = −

√
2GM

∫
dt

∆t =

√
R0

2GM

∫ R0

0

√
r

R0 − r
dr

let r = R0 sin2 θ

∆t =

√
R3

0

2GM

∫ π
2

0

2 sin2 θ cos θ

cos θ
dθ

∆t =

√
R3

0

2GM

π

2
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1 1.9

(ii) The body is a uniform sphere of radius R0.

−gSr = 4πG
M

R3
0

r3

g =
d2r

dt2
= −GM

R3
0

r

∆t =

√
R3

0

GM
arcsin

(
R0 − r
R0

)
∆t =

√
R3

0

GM

π

2

A multiplicative factor of
√

2 longer than the point mass scenario.

For a cluster of fixed density with radius larger than he initial position of the star, the mass
enclosed M is proportional to R3

0. Therefore, the time it takes the star to reach center is
independent of the starting position.

However I couldn’t imagine a circumstance in which all the “background stars” are fixed
instead of comoving.

Problem 1.9

(a)

Approximating the Earth’s atmosphere as a perfect static isothermal gas in uniform gravita-
tional field, the momentum equation reads

∇p = ρg

R∗T

µ
∇ρ = ρg = −ρgẑ

ρ = ρ(z) = ρ0 exp

(
− µg

R∗T
z

)
n = n(z) = n0 exp

(
− µg

R∗T
z

)
The characteristic length scale is

lc =
R∗T

µg

The fluid assumption breaks down where

1

nσ
� lc

12



1 1.10

z � lc ln(n0σlc)

z � zb = 8× 105 m

The radius of Earth is 6.4 × 106 m. At the height zb, gravitational acceleration will have
declined to (

6.4

6.4 + 0.8

)2

≈ 80%

its value at surface, which is quite significant. Both uniform gravity and fluid assumptions
break down.

(b)

Earth’s speed in the Sun’s frame is

v =

√
GM

r�

Consider Earth’s atmosphere as up to region with pressure higher than psurface/e. If the
Earth runs into a cloud of stationary hydrogen, for the ram pressure to be comparable to
atmosphere pressure, the number density of that cloud needs to be

ρv2 ∼ p

e

n ∼ R∗

kBµv2

p

e

n ∼ 3× 1022 m−3

i.e. roughly 0.1% the number density of atmosphere.

Problem 1.10

Assuming the sun is a static fluid, momentum equation and Poisson’s equation lead to

∇p = ρg

−∇ · g = 4πGρ

Assume all quantities vary over a radial scale length of order the radius of the Sun. Not sure
what this means, I assumed that ρ simply steadily decreases radially to 0, i.e.

ρ = ρ0

(
1− r

R�

)
Variations of other quantities follow.

M(r) = ρ0

∫
0

dr 4πr2

(
1− r

R�

)
13



1 1.10

M(r) = 4πρ0r
3

(
1

3
− r

4R�

)
M� =

ρ0

4

4πR3
�

3
=
ρ0

4
V�

g(r) = −GM(r)

r2

g(r) = −4πρ0Gr

(
1

3
− r

4R�

)
p0 =

∫ 0

R�

ρg dr

p0 =
4π

3
ρ2

0G

∫ R�

0

(
1− r

R�

)
r

(
1− 3r

4R�

)
dr

p0 =
4π

3
ρ2

0G

∫ R�

0

r − 7

4

r2

R�
+

3

4

r3

R2
�

dr

p0 =
4π

3
ρ2

0G
5

48
R2
�

p0 = 4.4× 1014 pa

If the Sun is supported mainly by gas pressure of proton p = R∗

µ
ρ0T , temperature at core

is
T ∼ 1× 107 K

which may be an underestimation because the solar core is not pure hydrogen.

If the Sun is supported mainly by radiation pressure p = 1
3
aT 4, temperature at core is

T ∼ 3.6× 107 K

14



2

Topic 2

Problem 2.1 Incompressible planet

The maximum pressure under which a planet’s composition can remain incompressible is p0.
Fo such an incompressible planet of radius R, the Poisson equation is

−∇ · g = 4πGρ

4πgr2 = 4πG
4π

3
ρr3

g =
4πG

3
ρr

where spherical symmetry was exploited. The momentum equation relates the maximum
total mass to the pressure at core

∇p = ρg

dp

dr
= −ρg∫ 0

R

dp

dr
dr =

∫ R

0

4πG

3
ρ2r

p0 =
4πG

3
ρ2R

2

2

R =

√
3p0

2πρ2G

M =
4π

3
ρR3

M =
4π

3
ρ

√(
3p0

2πρ2G

)3

M =
2

3

ρ√
ρ6

√
1

2π

(
3p0

G

)3

M =
2

3ρ2

√
1

2π

(
3p0

G

)3

Problem 2.2 Isothermal ring

An equilibrium ring of isothermal fluid orbits a star with mass M∗ at radius R. In the
plane of the ring, mechanical equilibrium results from a balance of centrifugal force and the
gravitational force of the central object; normal to the ring (ie. vertically) equilibrium is

15



2 2.2 Isothermal ring

between the vertical component of the gravitational force of the central object and vertical
pressure gradients in the ring gas.

Consider the vertical direction z.

dp

dz
= − GM∗

R2︸ ︷︷ ︸
gravitational field strength

z

R︸︷︷︸
vertical component

ρ

dp

dz
= −GM

∗

R3
ρz

If the ring consists of ideal gas,

p =
R∗T

µ
ρ

dp

dz
= −2

(
GM∗µ

2R3R∗T

)
︸ ︷︷ ︸

z−2
0

zρ

ρ ∝ exp

(
z2

z2
0

)

The e-folding length is

z0 =

√
2R3R∗T

GM∗µ

In the azimuthal plane the gravitational force from center balances with the centrifugal force,
so

GM∗

R2
= Ω2R

substituting into z0,

z0 =

√
2R∗T

µΩ2
=

1

Ω

√
2R∗T

µ

For z0 � R to be satisfied, we need

T � Tcritical =
µΩ2

2R∗
R2

If R is the astronomical unit, and the period of the ring is one year, this temperature takes
the value

Tcritical = 5.4× 104 K

16



2 2.3

Problem 2.3

(a)

If

Ψ = − GM

(r2 + b2)1/2

∇2Ψ =
1

r2

d

dr

(
r2 dΨ

dr

)
=
GM

2r2

d

dr

(
r2 2r

(r2 + b2)3/2

)
=
GM

r2

[
3r2

(r2 + b2)3/2

]
− 3r3 × 2r

2(r2 + b2)5/2

= GM
3(r2 + b2)− 3r2

(r2 + b2)5/2

4πGρ =
GMb2

(r2 + b2)5/2

ρ =
Mb2

4π(r2 + b2)5/2
∝
(

1√
r2 + b2

)5

∝ Ψ5

(b)

∇p = ρg

= −ρ∇Ψ

= −ρ GMr

(r2 + b2)3/2

= −3(GMb)2 r

(r2 + b2)4

If the pressure vanishes at infinities

p(r) = −3(GMb)2

∫ r

∞

r′

(r′2 + b2)4
dr′

=
(GMb)2

2

1

(r2 + b2)3

=
(GMb)2

2

(
4πρ

3Mb2

)6/5

= Kρ6/5

so we have the equation of state is polytropic with n = 1
6/5−1

= 5.

K =
(GMb)2

2

(
4π

3Mb2

)6/5

17



2 2.4

(c)

If the matter is isentropic, such that γ = 6/5, and consists of ideal gas, the internal energy
per unit mass is

E = CV T

together with the ideal gas equation

p =
R∗

µ
ρT =⇒ E =

CV µp

R∗ρ

Since CP = CV + R∗

µ
,

E =
CV

CP − CV
p

ρ

=
1

γ − 1

p

ρ
=

5p

ρ

The total internal energy is then integrated over all mass differentials

U =

∫ ∞
0

4πr2Eρ dr

= 5

∫ ∞
0

4πr2p dr

= 10π(GMb)2

∫ ∞
0

r2

(r2 + b2)3
dr

let r = b tan θ =⇒ U = 10π
(GM)2

b

∫ π/2

0

tan2 θ sec2 θ

(tan2 θ + 1)3
dθ

Use previous definition of K = (GMb)2

2

(
4π

3Mb2

)6/5

U =

[
10π × 2× (12π)6/5

∫ π/2

0

cos2 θ sin2 θ dθ

]
K

b3
(Mb2)6/5

U =

[
5

2
(12π)6/5π2

]
KM6/5b−3/5

Problem 2.4

In the lectures it was derived
ρ =

ρ0

cosh2

(√
2πGρ0µ
R∗T

z

)

18



2 2.4

Near z → 0, the density of the slab goes as

ρ ≈ ρ0

(
1− 2πGρ0µ

R∗T
z2

)
Near z →∞, it goes as

ρ ≈ ρ0 exp

(
−2

√
2πGρ0µ

R∗T
z

)

√
R∗T

2πGρ0µ

ρ0

ρ

z

A rough plot of ρ as a function of z. The relevant length scale is 1
a

=
√

R∗T
2πGρ0µ

.

The gravitational field g satisfies

∇ · g = −4πGρ

dg

dz
= − 4πGρ0

cosh2(az)

g = −Gρ0

a
tanh(az)

where the boundary condition was determined by antisymmetry about z = 0. Thence we
have

z̈ = g = −4πGρ0

a
tanh(az)

ż
dż

dz
= −4πGρ0

a
tanh(az)

ż2 = −8πGρ0

a2
ln
(
cosh(az)

)
+ C

19



2 2.5

Given a stars starts from rest at z = z0,

ż2 = −8πGρ0

a2
ln
(
cosh(az)

)
+

8πGρ0

a2
ln
(
cosh(az0)

)
=

8πGρ0R
∗T

2πGρ0µ
ln

(
cosh(az0)

cosh(az)

)
=

4R∗T

µ
ln

(
cosh(az0)

cosh(az)

)

Problem 2.5

For a polytrope of index n, ∫ ρ

0

P (ρ′)ρ′
−2

dρ′

=

∫ ρ

0

Kρ′
1/n−1

dρ′

=nKρ1/n

=n
P

ρ

The internal energy per unit mass of an ideal gas, as shown in Problem 2.3.c is

ε =
1

γ − 1

P

ρ

Therefore,

ε =

∫ ρ

0

P (ρ′)ρ′
−2

dρ′ ⇐⇒ 1

γ − 1
= n ⇐⇒ γ = 1 +

1

n
.

Polytropes of index n satisfy Lane-Emden equation

1

ξ2

d

dξ

(
ξ2 dθ

dξ

)
= −θn

where ρ = ρcθ
n, θ = ΨT−Ψ

ΨT−Ψc
, and ξ = r

√
4πGρc/(ΨT −Ψc). The equation of hydrostatic

equilibrium gives

ρ =

(
ΨT −Ψ

(n+ 1)K

)n
=⇒ ρc =

(
ΨT −Ψc

(n+ 1)K

)n
⇐⇒ Ψt −Ψc = ρ1/n

c (n+ 1)K

The Lane-Emden equation is not dependent on ξ, and the radius R of the star is defined at
Ψ = ΨT =⇒ θ(ξ) = 0, so the ξ-space interval that corresponds to the interior of the star is
dependent only on the index n.
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2 2.6

The total mass of a polytropic star is

M =

∫ R

0

4πr2ρ dr

= 4πρc

(
ΨT −Ψc

4πGρc

)3/2 ∫ ξmax

0

ξ2θn dθ

= ρ
1
2( 3

n
−1)

c K3/2

√
(n+ 1)3

4πG3

∫ ξmax

0

ξ2θn dθ

∝ ρ
1
2( 3

n
−1)

c

and the total internal energy U is

U =

∫ R

0

4πr2ρε dr

= 4π

(
ΨT −Ψc

4πGρc

)3/2 ∫ ξmax

0

ξ2(ρcθ
n)1+1/n dθ

= 4πρ1+1/n
c

(
ΨT −Ψc

4πGρc

)3/2 ∫ ξmax

0

ξ2θn+1 dθ

∝ ρ
1
2( 5

n
−1)

c

The coefficients of proportionality are fully determined by K and n, so we can write

U = U0

(
M

M0

) 5−n
3−n

Problem 2.6

Using some results from Problem 2.5,

M = ρ
1
2( 3

n
−1)

c K3/2

√
(n+ 1)3

4πG3

∫ ξmax

0

ξ2θn dθ

ξ = r

√
4πG

n+ 1
ρ

1−1/n
c K−1 =⇒ R = ξmax

√
n+ 1

4πG
K1/2ρ

1
2n
− 1

2
c

The temperature at core is simply

Tc =
Pcµ

ρcR∗
=

µ

R∗
Kρ1/n

c

Ditch all the terms which are only functions of n or universal constants, let

M ∝ RlTmc
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2 2.7

M ∝ K l/2ρl/2n−l/2c Kmρm/nc

M ∝ ρ
1
2( 3

n
−1)

c K3/2

=⇒ l

2
+m =

3

2
;

l

2n
− l

2
+
m

n
=

3

2n
− 1

2
l = m = 1

So we get

M =
M0

T0R0

TcR

For a series of stars which have the same polytropic index and central temperature, stellar
mass is proportional to radius.

Problem 2.7

Take the continuity equation and make small perturbations about p = p0, ρ = ρ0, u = 0,

ρ̇+∇ · (ρu) = 0

d∆ρ

dt
+ ρ0∇ ·∆u = 0

In a plane wave solution, this reduces to

iω|∆ρ| − ρ0ik|∆u| = 0

|∆u| = |∆ρ|
ρ0

ω

k

Recognizing the phase speed ω
k
, and |∆ρ| � ρ0 for first order perturbations, there is

|∆u| � cs

Speed of sound wave in air at s.t.p., which is fairly ideal

cs =

√
dp

dρ
=

√
R∗T

µ
≈ 3× 102 m s−1

The maximum longitudinal fluid velocity in the case of pressure fluctuations (which are
proportional to density fluctuations in isothermal ideal gas) of 0.1% is

|∆u| ≈ 0.3 m s−1
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2 2.8 Oblique shock

Problem 2.8 Oblique shock

Let the direction normal to the shock front be x. Decompose the motion fluid velocity
into parallel and perpendicular components to the normal of the shock front u and v. The
continuity equation, integrated from just left to just right of the shock front, says

ρ1u1 = ρ2u2 =⇒ ρ1

ρ2

=
u2

u1

The momentum equation states

∂t(ρui) = −∂j(ρuiuj + pδij) + ρgi

The only direction along which ρ, p, or u changes discontinuously is x. In equilibrium, the
left hand side is 0. Integrating from just left and just right to the shock front

ρ1u
2
1 + p1 = ρ2u

2
2 + p2

ρ1v1u1 = ρ2v2u2

Substituting in continuity equation, we find that there aren’t any discontinuous changes of
v. Finally conservation of energy gives

1

2
u2

1 + E1 +
p1

ρ1

=
1

2
u2

2 + E2 +
p2

ρ2

Given in this case the shock is adiabatic, internal energy is simply

E =
1

γ − 1

p

ρ

so
1

2
u2

1 +
γp1

(γ − 1)ρ1

=
1

2
u2

2 +
γp2

(γ − 1)ρ2

The speed of sound in adiabatic medium is

cs =

√
γp

ρ
=⇒ p =

ρc2

γ

substituting this in all the ps in the equations above, get

1

2
u2

1 +
c2

1

γ − 1
=

1

2
u2

2 +
c2

2

γ − 1

ρ1

(
u2

1 +
c2

1

γ

)
= ρ2

(
u2

2 +
c2

1

γ

)
=⇒ u2

(
u2

1 +
c2

1

γ

)
= u1

(
u2

2 +
c2

2

γ

)

=⇒ (γ − 1)

[
1

2
(u2

1 − u2
2) +

c2
1

γ − 1

]
= c2

2 = γ

[
u1u2 +

u2c
2
1

u1γ
− u2

2

]
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2 2.9

1

2

(
−u2

1 + u2
2

)
+ c2

1

u1 − u2

u1

= −γ
2

(
u2

1 − 2u1u2 + u2
2

)
−u2 + u1

2
+
c2

1

u1

= −γ
2

(u1 − u2)

u1 + u2 −
2c2

1

u1

= γ(u1 − u2)

u2 =
1

γ + 1

[
2c2

1

u1

+ (γ − 1)u1

]

An oblique adiabatic shock wave approaches the shock front at Mach number M , inclined
to the normal at an angle θ. Its velocity component normal to the shock front is

u1 = Mc1 cos θ

After the shock, it leaves at angle θ + χ to the normal. Since the components of the fluid
velocity parallel to the plane are unchanged

u1 tan(θ) = u2 tan(χ+ θ)

cot(χ+ θ) = cot(θ)
u2

u1

cot(χ+ θ) =
cot(θ)

γ + 1

[
2c2

1

u2
1

+ (γ − 1)

]
=

1

γ + 1

2 + (γ − 1)M2 cos2(θ)

M2 cos(θ) sin(θ)

Use the trigonometric identity for cot(χ+ θ).

cot(χ+ θ) =
cot(χ) cot(θ)− 1

cot(χ) + cot(θ)

cot(χ) = cot(θ)

[
1

cos2(θ)− cot(χ+ θ) cos(θ) sin(θ)
− 1

]
cot(χ) = cot(θ)

[
(γ + 1)M2

(γ + 1)M2 cos2(θ)− 2− (γ − 1)M2 cos2(θ)
− 1

]

cot(χ) = cot(θ)

[
(γ + 1)M2

2(M2 cos2(θ)− 1)
− 1

]
Honestly though, what is the point of getting cot(χ) except for psychological torture.

Problem 2.9

The lower bound of the interval that each cloud falls into the shock is if the two clouds do
not decelerate at all upon collision.

tcoll ≈
4R

2v0

=
4× 3× 1016

4× 103
= 3× 1013 s
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2 2.9

The time scale of cooling is

tcool ≈
1
2
u2

Q̇
= 8× 1010 s

This means that in the energy equation, the energy of the collided gas will be dissipated by
the cooling process much sooner than the collision is complete. The shock is approximately
isothermal.

The isothermal shock has c2
s = u1u2. In the zero momentum frame, the clouds are each

moving a speed v0 = 2 × 103 m s−1. If after the shock the clouds are stationary in the zero
momentum frame, we have in the shock front frame

u2 = u1 − v0 =
c2
s

u1

=
R∗T

µu1

=⇒ u2 = 4.07× 101 m s−1 (µ = 1)

u2 is the speed of propagation of shock wave in ZMF. When the shock wave meets the outer
edge of the clouds, the thickness of the shocked layer is

x = 2u2
2R

u2 + v0

= 2.39× 1015 m

If the clouds later relaxes into a hydrostatic isothermal slab, quoting the results from
problem 2.4,

ρ = ρ0 sech2(ax)

m(x) =
2ρ0

a
tanh(ax)

m(x) =

√
2ρ0R∗T

πGµ
tanh(ax) =

aR∗T

πGµ
tanh(ax)

where m(x) is the column density of matter within distance x on both sides of the slab centre,
thus the factor of a. Given m(∞) = 0.1 kg m−2,

a = m(∞)
πGµ

R∗T
= 2.53× 10−16 m−1

lc = 3.96× 1015 m

where lc is the critical length scale of mass distribution of the slab. The accumulative mass
fraction distribution is

tanh(ax) = tanh

(
x

lc

)
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3

Topic 3

Problem 3.1

For an adiabatic fluid the energy and momentum equations are

1

2
u2

1 +
γp1

(γ − 1)ρ1

=
1

2
u2

2 +
γp2

(γ − 1)ρ2

ρ1

ρ2

=
u2

u1

It was shown earlier that generally

u2 =
1

γ + 1

[
2c2

1

u1

+ (γ − 1)u1

]

In the limit of a strong shock u1 � c1, there is

u2 =
γ − 1

γ + 1
u1 ρ1 =

γ − 1

γ + 1
ρ2

and from the energy equation

ρ2u
2
1

p2

+
2γ

γ − 1

ρ2

ρ1

p1

p2︸︷︷︸
�1

=
ρ2u

2
2

p2

+
2γ

γ − 1

ρ2

p2

(
u2

1 − u2
2

)
=
ρ2

p2

γ2 + 2γ + 1− γ2 + 2γ − 1

(γ − 1)2
u2

2 ≈
2γ

γ − 1

ρ2u
2
2

p2

=
γ − 1

2

The Mach number is then

M2
2 =

u2
2

c2
2

=
ρ2u

2
2

γp2

⇐= c2 =

√
γp2

ρ2

for adiabatic fluid

M2
2 =

γ − 1

2γ

For the sound speed ratio

c2

c1

=
u2/M2

u1/M1

=
u2

u1

M1

M2

=
γ − 1

γ + 1

√
2γ

γ − 1
M1
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3 3.2

=

√
2γ(γ − 1)

γ + 1
M1

A shock from a supernova travelling through the surrounding interstellar medium is ob-
served to be travelling with speed 3000 km/s. What is the temperature immediately behind
the shock? A cavity is expanding so the interstellar medium is seen as incoming gas 1. The
temperature in the expanding cavity T2 is then

c2

c1

=

√
γp2

ρ2

ρ1

γp1

=

√
T2

T1

T2

T1

=
2γ(γ − 1)

(γ + 1)2
M2

1

T2 = T1
2γ(γ − 1)

(γ + 1)2

u2
1µ

γR∗T1

T2 =
2γ(γ − 1)

(γ + 1)2

µ

γR∗
u2

1

T2 = 1.73× 108 m s−1

where we assumed µ = 1, R∗ = 8.3× 103 J kg−1, γ = 3
2
, and u1 = 3× 106 m s−1.

Problem 3.2

The momentum equation under hydrostatic equilibrium and spherical symmetry

u
du

dr
= −1

ρ

dp

dr
− GM

r2
= −1

ρ

dp

dρ︸︷︷︸
c2s

dρ

dr
− GM

r2

and conservation of mass outside the star (and no accretion of mass outside the star) means

Ṁ = 4πr2ρu = const. in space

d ln Ṁ

dr
= 2

d ln r

dr
+

d ln ρ

dr
+

d lnu

dr
= 0

2

r
+

d ln ρ

dr
+

d lnu

dr
= 0

2

r
− 1

c2
s

(
GM

r2
+ u2 d lnu

dr

)
+

d lnu

dr
= 0

(
c2
s − u2

)d lnu

dr
=
GM

r2
− 2c2

s

r
= −2c2

s

r

(
1− GM

2c2
sr

)
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3 3.3

If the wind reaches isothermal sound speed
√

R∗T
µ

the left hand side will vanish so

rs =
GM

2c2
s

=
GMµ

2R∗T

For M = M�, T = 2× 106 K,
rs = 4.02× 109 m

which is about 13 lightseconds.

Problem 3.3

Quote the previous problem(
c2
s − u2

)d lnu

dr
= −2c2

s

r

(
1− GM

2c2
sr

)
Use Bernoulli’s principle

H =
1

2
u2 +

∫
dp

ρ
− GM

r
= const.

Assuming the gas remains isothermal, so p = R∗

µ
Tρ

H =
1

2
u2 +

R∗T

µ
ln ρ− GM

r

at ∞ H =
R∗T

µ
lnρ0

ρs = ρ0 exp

[
µ

R∗T

(
GM

rs
− 1

2
c2
s

)]
ρs = ρ0e

3/2

rs =
GM

2c2
s

=
GMµ

2R∗T

Ṁ = 4πr2
sρscs

Ṁ =
4πG2M2ρ0e

3/2

4c4
s

cs

Ṁ =
πG2e3/2ρ0

c3
s

M2

For M = M�, cI =
√

r∗T
µ

,

rs = 9.53× 104 R�
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3 3.4

Ṁ = 8.38× 1014 kg s−1

To find the time elapsed before mass doubles solve

Ṁ = αM2

1

M0

− 1

2M0

= αt×2

t×2 =
1

2αM0

=
M�

2Ṁ�
= 1.19× 1015 s = 3.78× 107 years

This time is inversely proportional to the initial mass of the star.

Problem 3.4

G, L, and ρ0 cannot be combined to give a natural length or time scale of the problem, so the
solution must be self-similar (hence the name similarity solutions?) on all length and time
scales. Does that mean we must have a power law dependence for length evolution problems?

Let

r ∝ Laρb0t
c

dimensional analysis =⇒ a =
1

5
; b = −1

5
; t =

3

5

Assuming “the area occupied” is πr2, the bubble is stalled when

dr

dt
∝ Laρb0

(
3

5
t−2/5

)
= cs =⇒ t2/5 ∝ Laρb0c

−1
s

which means

πr2 ∝ L2aρ2b
0

(
Laρb0c

−1
s

)3

= L5aρ5b
0 c
−3
s = Lρ0c

−3
s

The area occupied by stalled bubbles is proportional to L, so if the total luminosity is fixed,
the “porosity” of the galaxy is independent on how ionising stars are organised into clusters.

If the disc of a galaxy can be approximated by a uniform density gas slab with a sharp
edge at height z, exceptionally luminous clusters of gases can escape the regime of similarity
solution regime if their bubbles are not stalled until r > z.

Problem 3.5

Assume a barotropic equation of state, the convection instability condition is(
∂ρ

∂z

)
K

<
dρ

dz
(unstable)
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3 3.6

where fixing the K corresponds to adiabatically shifting a fluid element

p(z) = K1(z)ργ(
∂ρ

∂z

)
K1

=
1

γργ−1K1

dp

dz
=
ρ

γ

d ln p

dz

dρ

dz
=

d

dz

(
p

K1

) 1
γ

dρ

dz
=

1

γ

(
p

K1

) 1
γ
−1(

1

K1

dp

dz
− p

K2
1

dK1

dz

)
dρ

dz
=
ρ

γ

(
d ln p

dz
− d lnK1

dz

)
ρ, γ > 0 =⇒ d lnK1

dz
< 0 (unstable)

Given that the equation of state is polytropic

p = K2ρ
1+ 1

n =⇒ K1(z) =
p

ργ
= K2ρ

1+ 1
n
−γ =⇒ d lnK1

dz
=

(
1 +

1

n
− γ
)

d ln p

dz(
1 +

1

n
− γ
)

d ln p

dz
> 0 (stable)

Since hydrostatic equilibrium requires d ln p
dz

< 0, the gas is stable iff

1 +
1

n
− γ < 0 =⇒ 1

n
< γ − 1

Using the condition derived in problem 3.5, we see the gas is convective stable for γ > 1
2

which holds for all ideal gases.

Problem 3.6

The thermal instability condition is

d

dT

(
Q̇heat − Q̇cool

)
> 0 (unstable)

−

(
∂ρ
√
T

∂T

)
p

> 0 =⇒ − ∂

∂T

pµ

R∗
√
T
> 0

− 1

T 3/2
> 0 =⇒ condition always satisfied

At equilibrium,

Q̇heat = Q̇cool =⇒ Q̇Bremsstrahlung = ρ
√
T
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3 3.7

p =
R∗T

µ
ρ =

R∗

µ
Q̇2

Bremsstrahlungρ
−1 =⇒ n = −1

2

Problem 3.7

In a uniform gaseous sphere containing one Jeans mass, the length scale of the sphere is

λJ =

(
MJ

ρ0

)1/3

Free fall is governed by a simple harmonic equation of motion

g = −4πGρ0r

3
=⇒ ωG =

√
4πGρ0

3

Tfree fall =
π

ωG
=

√
3π

4Gρ0

Sound wave crossing time for high wavenumber waves are

Ts =
λJ
cs

Ts =

√
πc2

s

cs
√
Gρ0

=

√
π

Gρ0

The ratio between these two time scales are√
3

4
∼ 1

If such a sphere contracts homogeneously by R

R→ R−1

√
πc2

s

Gρ0

Since the total mass is constant,

ρ =
M

R3
→ R3ρ0 λJ → R−3/2

√
πc2

s

Gρ0

such that

MJ = ρλ3
J = R3−9/2ρ0

(
πc2

s

Gρ0

)3/2

= R−3/2M =⇒ M = R3/2MJ
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3 3.8

Problem 3.8

The momentum equation can be written as

∂u

∂t
+∇

(
1

2
u2

)
− u× (∇× u) = −∇

(∫
dp

ρ
+ Ψ

)
If the disc is rotating as a whole, none of the left-hand side has any z-components, so in the
z-direction

0 = − ∂

∂z

(∫
dp

ρ
+ Ψ

)
0 = − ∂

∂z

∫
dp

ρ
− GM

r2

z

r

0 = − ∂

∂z

∫
dp

ρ
− GM

r3
z

If ρ = A(r)
(
z2
m − z2

)2

GM

r3
z = − ∂

∂z

∫
dp

ρ

dz

dρ

GM

r3
z = −dz

dρ

∂

∂z

∫ (
1 +

1

n

)
Kρ

1
n
−1 dρ

− 1

4A(z2
m − z2)z

GM

r3
z = −

(
1 +

1

n

)
Kρ

1
n
−1

GM

4r3

1√
A
ρ−

1
2 =

(
1 +

1

n

)
Kρ

1
n
−1

=⇒ 1

n
− 1 = −1

2
=⇒ n = 2

=⇒ p = Kρ
1
n

+1 ∝
(
z2
m − z2

)3

The gas is stable iff

1 +
1

n
− γ < 0 =⇒ n >

1

γ − 1

so the gas is stable against convection if composed of diatomic gas but is overstable if com-
posed of monatomic gas.

Problem 3.9

Under hydrostatic equilibrium
ρ(u · ∇)u = −∇p
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3 3.9

Across the jet-slab boundary the left hand side vanishes, so ps = pj.

pj =
R∗

µ
Tjρj = ps =

R∗

µ
Tsρs

ρj =
Ts
Tj
ρs =

Ts
Tj
ρ0 sech2

(
z

zs

)
Inside the jet along z,

ρjuz
d

dz
uz = − d

dz
pj = −c2

j

d

dz
ρj

1

2

d

dz
u2
z = −c2

j

d

dz
ln ρj

1

2c2
j

(
u2
z − u2

0

)
= ln

(
ρ0j

ρj

)

u2 = u2
0 + 2c2

j ln

(
ρ0j

ρj

)
Under isothermal conditions, Bernoulli’s principle yields

u2 = c2
j

1 + 2 ln

(
uA

cjAm

)
uA

cjAm
= exp

1

2

(
u2

c2
j

− 1

) =⇒ um = cj

Am =
uA

cj
exp

[
1

2c2
j

(
c2
j − u2

)]

Am =
Ṁ

ρ0jcj
exp

 1

2c2
j

c2
j −

(
Ṁ

A0ρ0j

)2

 evaluated at reference point z = 0

where Ṁ = ρuA = const. and c2
j = R∗Tj/µ.

Since Ṁ = ρscjAm = ρ0ju0A0

ρs =
Ṁ

cjAm

ρs = ρ0j exp

− 1

2c2
j

c2
j −

(
Ṁ

A0ρ0j

)2

 = ρ0j sech2

(
zm
zs

)
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3 3.9

=⇒ zm = zs sech−1 exp

− 1

4c2
j

c2
j −

(
Ṁ

A0ρ0j

)2



A(z) =
Ṁ

ρu
= Ṁρ−1

0j cosh2

(
z

zs

)u2
0 + 2c2

j ln

[
cosh2

(
z

zs

)]−1/2

A(z) = A0 cosh2

(
z

zs

)1 + 2
c2
j

u2
0

ln

[
cosh2

(
z

zs

)]−1/2
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4

Topic 4

Problem 4.1

Under adiabatic jump conditions, immediately behind the shock

ρu2

p
=

1

2
(γ − 1).

The momentum equation states

ρu︸︷︷︸
const.

du

dx
+

dp

dx
= 0 =⇒ d

dx

(
ρu2 + p

)
= 0

As ρ increases upon cooling down, ρu2 decreases overall so p has to increase. Thence ρu2

p

decreases from 1
2
(γ − 1).

For a monatomic gas, γ = 5
3
. Immediately after the shock

p2 = ρ2u
2
2

[
1

2
(γ − 1)

]−1

= 3ρ2u
2
2

Upon returning to pre-shock temperature, we could use the available relations for isothermal
shock

ρ2

ρ1

=
u1

u2

=
u2

1ρ1

p1

=⇒ p2(T1) = ρ1u
2
1 = 4ρ2u

2
2

∣∣∣∣
immediately after shock

where we substituted
u1

u2

∣∣∣∣
immediately after shock

=
γ + 1

γ − 1
= 4

Therefore,
p2(T1)

padiabatic
2

=
4

3
.

Assume constant thermal pressure from now on.

cp
dT

dt
= −Q−

cp
dT

dt
= −K(p)︸ ︷︷ ︸

const.

T 2

T (t) =
T2

1 + T2
K
cp
t

p = R∗Tρ
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4 4.2

u =
u2ρ2

ρ
=
u2pR

∗T

R∗T2p
=
u2T

T2

dx

dt
=
u2

T2

T

x =

∫ t

0

u2

1 + T2
K
cp
t

dt

x =
cpu2

KT2

ln

(
T2

T

)

T = T2 exp

(
−KT2

cpu2

)

Problem 4.2

Start from Navier-Stokes equation

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν

[
∇2u +

1

3
∇(∇ · u)

]
Assume that uφ = ur = 0 such that mass is not accreting onto annular surfaces of the pipe
and the fluid is curlless. The fluid is incompressible, so under equilibrium we have uz = uz(r).

0 = −1

ρ
∇p+

η

ρ
∇2u

dp

dz
= η

1

r

d

dr

(
r

duz
dr

)
p2 − p1

2ηlr

(
r2 − A

)
=

duz
dr

p2 − p1

4ηl

(
r2 − 2A ln r − C

)
= uz

p2 − p1

4ηl

(
r2 − R2

1 −R2
2

lnR1 − lnR2

ln
r

R2

−R2
2

)
= uz∫

2πruz dr =
p2 − p1

4ηl

∫ R2

R1

2πr

(
r2 − R2

1 −R2
2

lnR1 − lnR2

ln
r

R2

−R2
2

)
dr

∫
2πruz dr =

p2 − p1

2ηl
π

r4

4
− R2

1 −R2
2

lnR1 − lnR2

R2
2

(
1

2

(
r

R2

)2

ln
r

R2

− r2

4R2
2

)
−R2

2

r2

2

R2

R1∫
2πruz dr =

π

2ηl
(p2 − p1)I
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4 4.3

where

I =

[
−R

4
2

4
+

R2
1 −R2

2

lnR1 − lnR2

R2
2

4
− R4

1

4
+
(
R2

1 −R2
2

)R2
1

2
− R2

1 −R2
2

lnR1 − lnR2

R2
1

1

4
+
R2

2R
2
1

2

]

I =
1

4

[
R4

1 −R4
2 −

(R2
1 −R2

2)2

lnR1 − lnR2

]
Finally, the total mass flux through the pipe is

Q = ρ

∫
2πruz dr =

πρ

8ηl
(p2 − p1)

[
R4

1 −R4
2 −

(R2
1 −R2

2)2

ln
(
R1/R2

) ]

Problem 4.3

Continuity equation requires u be divergence-free. For an incompressible fluid, Navier-Stoke’s
equation reads

ρ(u · ∇)u = ρg + η∇2u

where we have assumed barotropic equation of state such that the pressure gradient term
vanishes with fixed ρ. There are not any fluid coming in or out the bounding planes so
u = ux(z), where x and z are parallel and perpendicular to the planes

0 = ρg sinα + η∂2
zux

ux = −g sinα

ν

z2

2
+ Az +B

Applying B.C.s that ux = 0 at z = 0 and dux
dz

= 0 at z = h.

ux = −g sinα

ν

z2

2
+
gh sinα

ν
z

Q = ρ

∫ h

0

ux dz

Q = −ρg sinα

ν

h3

6
+
ρgh sinα

ν

h2

2

Q = −ρgh
3 sinα

3ν

Problem 4.4

IF there is no pressure gradient or gravitational field, for an initially unidirectional fluid ux(y)

∂u

∂t
+ u · ∇︸ ︷︷ ︸

0

u = ν

∇2u +
1

3
∇

∇ · u︸ ︷︷ ︸
0




37



4 4.5

∂u

∂t
= ν∇2u = ν∇2uxx̂

The direction of change is in the same direction x so the unidirectionality will be conserved.

∂u

∂t
= ν∂2

yu

∂

∂t
ũ = −νk2ũ

ũ = exp
(
−νk2t

)
ũ(k, t = 0) = exp

(
−νk2t

) ∫ ∞
−∞

u(y′, 0) exp
(
−iky′

)
dy′

u(y, t) =
1

2π

∫ ∞
−∞

ũ exp(iky) dk

u(y, t) =
1

2π

∫ ∞
−∞

u(y′, 0)

∫ ∞
−∞

exp

[
−νk2t+ ik(y′ − y) +

(y′ − y)2

4νt

]
exp

[
−(y′ − y)2

4νt

]
dk dy′

u(y, t) =
1

2π

√
π

νt

∫ ∞
−∞

u(y′, 0) exp

[
−(y′ − y)2

4νt

]
dy′

u(y, t) =
1

2
√
πνt

∫ ∞
−∞

u(y′, 0) exp

[
−(y′ − y)2

4νt

]
dy′

Problem 4.5

In cylindrical symmetry, the continuity equation is∫
dz

∂ρ

∂t
+

∫
dz∇ · (ρu) = 0

∂Σ

∂t
+

1

R

∂

∂R
(RΣuR) = 0

and the Navier-Stokes equation is

∂u

∂t
+ u · ∇u = −1

ρ
∇p−∇Ψ + ν

[
∇2u +

1

3
∇(∇ · u)

]
∂t(RΩ) + uR∂R(RΩ) +

RΩuR
R

= ν
1

R
∂R
[
R∂R(RΩ)

]
− νRΩ

R2

Σ∂t
(
R2Ω

)
+R2Ω∂tΣ +

R2Ω

R

∂

∂R
(RΣuR)︸ ︷︷ ︸

0

+ΣuRR
[
∂R(RΩ) + Ω

]
= Σν

{
∂R
[
R∂R(RΩ)

]
− Ω

}
∂t
(
ΣR2Ω

)
+ ∂R

(
uRΣR2Ω

)
+ ΩΣuRR = Σν

(
∂RR

2∂RΩ +R∂RΩ + Ω− Ω
)

∂t
(
ΣR2Ω

)
+

1

R
∂R
(
uRΣR3Ω

)
=

Σν

R
∂R
(
R3∂RΩ

)
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4 4.6

Problem 4.6

For non-relativistic scheme magnetic field is expected to dominate over electric field. To
linear order of perturbation terms, plane wave solutions satisfy

j =
1

µ0

∇×B =⇒ j =
1

µ0

ikB1

ρ

(
∂u

∂t
+ u · ∇u

)
= qE + j×B−∇p =⇒ ρ0(iωu1) =

1

µ0

(ikB1)B0 + ikp1

∂ρ

∂t
+∇ · (ρu) = 0 =⇒ iωρ1 − ik(ρ0u1) = 0

∂B

∂t
=∇× (u×B) =⇒ iωB1 = iku1B0

Substitute all the other three into the equation of motion for u,

ωu1 =

(
B0B1

ρ0µ0

+
p1

ρ0

)
k

ωu1 =

(
B0B0u1k

ωρ0µ0

+
p1

ρ1

ρ0u1k

ωρ0

)
k

ω2 =

(
B2

0

ρ0µ0

+
dp

dρ

)
k2 =

(
v2
A + c2

s0

)
k2 ⇐⇒ ∂2u1

∂t2
=
(
v2
A + c2

s0

)∂2u1

∂y2

The speed of plane wave found in magnetic material is greater than that in nonmagnetic
material because there is an extra magnetic pressure contribution on top of the thermal
pressure.

Problem 4.7

Jeans mass is tha mass when collapse time scale equals wave propagation time scale. It scales
as

MJ ∼ ρ0λ
3
J = ρ0

(
πc2

s

Gρ0

)3/2

If supporting pressure is dominated by magnetism

c2
s ∼

B2

ρ0

=⇒ λJ ∼
B

ρ0

√
π

µ0

√
G

=⇒ MJ ∼ ρ0
B3

ρ3
0

=
B3

ρ2
0

If a uniform cloud contracts homogeneously like

r → αr
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4 4.7

Conservation of mass leads to

ρ0r
3 → ρ0r

3 =⇒ ρ0 → α−3ρ0

The flux of a frozen-in magnetic field through the surface of the cloud is conserved throughout
the motion, in this case contraction, of the cloud fluid

Br2 → Br2 =⇒ B → α−2B

Hence as the cloud collapses the number of magnetic Jeans masses contained

M

MJ

→ M
α−6

α−6MJ

=
M

MJ

is conserved.
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