AQP Example Sheets

Feiyang Chen
Michaelmas 2020

Contents

O© 1 0O = kW Ww



CONTENTS CONTENTS

4 34
A1 34
4.2 e 35
4.3 e 36
4.4 e 38
4D e 41
4.6 44
AT 46
A8 48
4.9 e 48



1

Example Sheet 1

Example 1.1

H is Hermitian

(a)
H [ip1) = Ex [th)
H [5) = By [ihy)
(Wa] H [2) = (o] H |¢2) = 0
— Bs) (U [ha |t [102) = 0
E,# B, = <¢1|¢2‘¢1|1/12> =0 = orthogonal eigenstates
(b)
Aldbr) = [ea) s Ala) = y)
A5+ el ) = 5 + 161)) = o)
1
A5 = ) ) = 51 o)) = o)
eigenstates eigenvalues
|a1) 1
|as) -1
(c)
At t = 0 after measuring A,
[4(0)) = |az) = 7<|w1> [¢2))
1 _itp _itp
(1)) = E(e PP ) — e [ehe))
(t) = (@l )|l (®))’]
1 2

it it
—le hE2—|—ehE1

T




Est Eqt Est Et
2 0s ?1)2 + (Sin?2 + sin ?1)2)

( Est  Eit . Est Eﬁ)
COS

CcoS + sin sin —

h h h h

Example 1.2

R (00

! omi (w Ox 4 ot )
_ h * —ikx * _ikx . ikx . —ikx
=5 (A e 4+ B*e )(zkAe 1kBe )

(e 4 Be ) (—ikAre e 4 z'/cB*e“mﬂ
I% [2(ikA°A — ikB*B) + 0]

mi

=" (4P —15P)

Example 1.3
(a)

a' [¢n) = Vn+1|thns1)
a |¢n> = \/ﬁ|¢n—1>
(@lz)y, = (Unl T |¢n)

= VIO ot a) o)

2mw
— ;:Z:jw (Unl (VN + 1 thng1) + V1 |thn1))

= 0 by orthogonality of eigenstates
(pIP)y, = (Wl P [¥n)

1V 2mhw

= D (il (' — @) )

_ 2miw (Wul (VR + 1 [ng1) = V1 [hn-1)

2




1.3

(b)

(c)

= 0 by orthogonality of eigenstates

= (n+ )hw

vV 2mhw

2mw

(Wl V [t0) = ( ) = (Wl (@' + @) o)
1

= 1 (gl ala + aa) 1)
= o (@l (044 1))
1 1

p? 1 t 2

= 3 (vl (ala + aa') 1)

1

= 31 (Wl (n 4+ 1) [5)

1 1
== —)hw
2(n+2)

(Az)? = (2%|2%) — (z|x)?
1 1

2
a §(n ) mw?
1. h

=t

(Ap)? = (P*p*) — (plp)®

1 1
= §(n + 5)7%} 2m

1
= (n+ §)hmw




1.4
1
AzAp = (n + §)h
Example 1.4
It is easy to compute
B2 10 -1 B2 -1 0 -1
[Lx,Ly]zz? 00 0 ]—iz| 0 0 0)=ihL.
1 0 -1 1 0 1
Similarly,
B2 000 B2 0 -1 0
[Ly,Lz} =i— |1 0 1| —i— 0 0 O] =1hl, L., L] =ihL,
V2 000 V2 0 -1 0
These operators:
e are Hermitian;
e act on vectors in R® == have 3 degrees of freedom for m; = —1,0, 1 respectively;
e satisfy commutation relations;
Therefore they are suitable as angular momentum operators.
1 01 -1 0 1 100
. h? h? h?
* \ subsection 0 1 Y \ subsection 0 —1 =\0 0 1
1 1,2 1 1
o (rtn 0 LTI,
H== 0 2+ 2 0
1 RPN 2
The energy eigenstates and eigenvalues are
—= (1Y) + Y1) = [1Yar) = [¥i)] Yio)
V2 V2
1 1 1 1 1 1
=+ — =4+ = =+ —
[Iw * IJ I, * I, I, * I,




Example 1.5
Define

R . 0 1 o 0 —1 1 0
So.p = 5 sin 6 cos ¢ (subsection O> + sin # sin ¢ (z 0 ) + cosf (O _1>

( cos 0 sin f(cos ¢ — i sin gb))

| =t

2 \ sinf(cos ¢ + isin ¢) —cosf

Its eigenvalues are solutions to the equation

2 2
(0059 — —8) (COS@ + —S> + sin® «9((:052 ¢ + sin® ¢) =0

h h
2s 2
1-(22) =
h
_ 4
5T

and eigenstates can be worked out by
cosf e @sinf\ [ 1
o =+1
e?sinf —cosf (0 (o)

_i® 0 _io . 9

U e 2 cos g e 2 sing
= ¢ . 9 or i@ 0

(0 €2 sing €2 CoS 5

The spin eigenstates for +x, —x, +y, —y are therefore

i 1 i —1 1 1—14 1 1+
V2 subsection V2 i 2 \ subsection + 1 2 \ subsection — 1

respectively.

Example 1.6

The energy eigenvalue equaion for any one particle gives

h2 2
SOy Vi = By

2m 0x?

2
Yp(x) = \/;sin (niLx) for x € [0, L] 0 otherwise



1 1.6

We want a wavefunction for two indistinguishable particles. Two particles in the same

state m; = no are already exchange symmetric. For two particles in two states n; #
nq,symmetrising over the spatial part gives

1
75 (a1 (22) £ 1) 22)

H(ay,ap)wele — 2| (T (Y
1, %2 “om|\L I

The total energy eigenvalue is

\I/S/a (ZL‘l, Ig) =

ni,mn2

\I]s/a

h2m?

2m L2 (

n% + n%) = (n% + n%)e
With E = 5e = (1% + 2%)e

(a)
Spin zero particles are symmetric under exchange.
1

‘W<I1,$2)> = \/§

(1 (@1) 12 (22) + Yo ()b (22)] = WF,

(no spin parts attached.)

(b)

Spin—% particles have overall exchange-antisymmetric wavefunctions. Spin singlets have an-
tisymmetric spin parts so wavefunctions have to be symmetric

1

"I’(xb T3), 50,0> = \IinE

[114) = )]

(L.0) (L, L)

(0707 (0, L)

Figure 1: Approximate plot of (\Ils(xl,mg))Q



(0;0) (0, L)

Figure 2: Approximate plot of (\Ila(xl, 172))2

(c)
3 different spin triplet states which have symmetric spin parts can be constructed, their
spatial parts are antisymmetric.

1
|‘I’($1,£U2), 51,—1> = ‘I’(ﬁﬁ 4
1
V2
1
If the particles interacted via a repulsive interparticular potential, the energy of exchange

symmetric wavefunctions would increase whereas the energy of exchange antisymmetric wave-
functions would decrease.

W (21, 22), S10) = W5 ,—= 1) + [11)]

Va1, 22), 81,00) = U8

Example 1.7

For the Quantum Harmonic Oscillator

. 1
H = (d'a + é)hw
UT _ eth _ 6%(714—%)77/.4; ‘n> <7’L|
n=0
a(t) =) en =R iy () a(0) [n) (n|

= > m) b (0l
=e Y Vnln - 1) (n]



1.7

= e “a(0)
Similarly,

al(t) =Y e m) Vn + 16, ne1 (n]
a'(t) = e In+1)Vn+1(n|

a'(t) = e™'al(0)

== ——(a'(t) +a(t))

dz  V2mhw . .
T o (iwa'(t) — iwal(t))
dz  V2mhw p
&= WO e =

dt ~ h h
£\ 2
_toitp ()" s| —wn
_eﬁ , e
h 2m
' 9p(~in)
= ——=2p(—1t
2m P
_ 7
m
Similarly,
pt) = e % e i
dp ite A : o l
U1 i g oL gy e
= 2T [V (@), 5]
i av (z) i
h dx
_ _G%HdVS@) o~ HH




Example Sheet 2

Example 2.1

For a system in a time-independent Hamiltonian, the time shift operator is
U(t, t[)) — e—i(t—to)H/ﬁ

Ut to) = Y exof it~ )52 L) (0

n

where [1),,) are the energy eigenstates.
(a)

U<t7t) = Z |¢n> <wn‘

Identity is satisfied.

(b)
Ut 1)U 61, 10)
=S exp{ it =005 o)l it 1052} )
gexp{i<t2 - m%} exp{—wl - to>E—,;”}6nm ) (o]
;exp{i<t2 — )5 b )
it
(©

11



and from (a) and (b) we have
U(tl, t2)U(t2’ t1> — U(tl, t1> — [
— UT(tQ,tl) = U(tg,tl) = U_l(tl,tg)

(d)

From (c¢) we have
Ulta, t)U(ta,t1) = I

The unitarity of U is the quantum counterpart of Liouville’s theorem in classical mechan-
ics. If U were not unitary, the probability of all the states summed up would not be 1 after
some time-evolution, corresponding to a nonconservative, irreversible action on the system.

Example 2.2

(a)
(1| UT(t, 1)U (t, to) [th2) = (W] I |1ha) = (b1 tha)

So inner products are conserved by time shift operator.

(b)

As inner product is conserved, normalisation
(| U (t,0)U (¢, t0) [1h1) = (4| L [ihr) = 1

is also conserved.

(c)
Tr(@) = Z (Wi 0 |%i)

where 1); is an orthonormal basis. The trace transforms as
Tr(é) — Tr(UTOU)
= {¢;|UTO ) (6l U |5)
ij
= Z (0:l UUTO |s)
~T(0)

12



2 2.3

So the trace of a general operator in Heisenberg picture is invariant.
For the commutator of U and H, we notice

[07 I:I} _ [e—i(t—to)H/th]
> (p( =000 o il )t

—E, |¢n> (| exp <_%) W}m) <¢m|>
=0

U and H have the same set of eigenstates. This means that in a system of time-independent
Hamiltonian, energy eigenstates are stationary states, whose observed value do not change
with time.

O Lilt—to)Ao/h 9 i(t —to) By
BT gRA i — Un) (¥n|

=3 () )

Example 2.3

For a system described by a time-dependent Hamiltonian, Schrodinger equation reads

d .
i [0(0)) = (1) [0(2))

By definition, we also have R
(1)) = Ult, o) |(to))

which gives

d - N N
ih=U(t,ts) = HHU (t,10)

d - VPSRN
EU(t to) = —ﬁH(t)U(ﬂto)

Ut +dt 1) = Ult, to) (1 — —7%131( )dt>

13



(t—to)/ot i
T(t. 1) = im T 1 — —H(ty + j6t)0t
Gttt = Jim 7| T (1 gttt + o0t

6t—0 :
J

(t—to)/dt

~ = i, :
Ult,ty) =T (}gnm H exp{ln (1 - ﬁH(to +j(5t)5t> }

J

where exp and In of the operators have been defined by Taylor series. The natural logarithm
can be expanded to

—%ﬁ(to + j6t)5t + O(5t)

which in the limit gives

A

Ult, to)

6t—0

(t—to) /6t ;
7 | lim exp{—ﬁﬁ(to —I—j(5t)(5t}

J

I Jy,

L o
U(t, to) T’exp{—f ﬁ(t’)dt’}

Where in the last step we used the property of product of exponentials proven below in Qu.
4 (extended to an infinite number of operators involved by mathematical induction).

Example 2.4
We begin by expanding

00 l m
% 1 l! m! Al—m am—n An
=0 z:;zzg:ﬁm!(l—m)!n!(m—n)!7 pra

14



n=n; m=m-n; l’:l—

oo m/4n'+l'= Al/ Bm/ !

:@Z Z ZT!m’!%

m/ n’l’

o
AU om! an/

", T
=01 > AR AR

m’ n/ 1’

— expl3] exp| 3] expldl

which is the desired expression. In the above derivation we cound not have used binomial
theorem if the ordering operator were not in place. Similarly,

V = expld] exp [8} exp[§]] = O {exp{o? + 6+ ﬁ}]
The ordering is reversed by adjoint, because
(4B)' = BrA'
for any two general operators.

Example 2.5

The density operator of an ensemble [ is

I
ZPwZ Wi

So we have
Te(p) = Z (5] Pi |n) (il )
-3 R e ol

Where }¢]> is an orthonormal basis.
The density operator is self-adjoint because probabilities are real.

I
pr=" " P li) (il = p

15



A pure state for which

p=1v) (Yl

pp = (Y[Y) ) (Y]
= (¢[¥)
=p

is idempotent.

Example 2.6
For a pure state,
= Z (05 0° | 05)
() = 3 (il o)
Tr(p%) = Tr(p) = 1

But for a mixed state,

= " PP (3]t W) ()

<1
'\

_ c >
‘;%;&Wﬁ”<l

For a general time-dependent Hamiltonian, we derived that the time shift operator
. S i [t
Ult,to) =T |expd —1 / Ay ar
to

(t) = Ut ) () (1, o)
Tr(p(t)) = Tr (Ut to)plto) ()0 (. 10))
Tr(p"()) = Tr(p*(to))

where the unitarity of U was used twice.
Therefore, a pure state cannot evolve into a mixed state and vice versa.

is unitary. So we have

(1)
(1)

t

16



Example 2.7
The density operator of a time-independent Hamiltonian has matrix elements

pmn( ) = <¢m’p< )| >
= (Wl U(t,t0)p(to)UT (t, o) [thn)

= oxp (M) 40 )

h
If p is a pure state, we have

pn = oxp (NI ) g

Taking time derivative gets us

. (B, — E,)(t—t
pom = (8~ By exp (=) ) g
equivalent to von-Neumann’s equation.
Example 2.8
The thermal density operator
p= e
Z
For a simple harmonic oscillator
. 1
H = hw (CLTQ + 5)
so we have
Z = Tx(p)
=S ew(-0n+ 7
- P\ )T
B 1
~ 2sinh(hwf3/2)
(B) = Tr <,6H>

17



10 1
~ Z 0B | 2sinh (hwf/2)
1 hw cosh(hw/3/2)
27 2 sinh?(hwf3/2)
_ @ i, Zexp(—hwﬁ/Q)
2 exp(hwﬂ/2) — exp(—hwﬁ/Q)

m@*W)

Var(E) = Tr<ﬁﬁ2) (B
9(E)
op
_ ()
sinh?(hwp)

In the expression for (F), the additive constant %‘" is the ground energy, whereas
is Bose-Einstein statistics.

1
exp(hwfB)—1

18



Example Sheet 3

Example 3.1
(a)
The diatomic molecule is constrained to rotate in z-y plane, so its rotational part Hamiltonian
is given by
]2
=z
21
L, 2

_—_h2 A
N 83/ Yo

Ay 3qb Oy Or

21 oo
—h? 92
- ST 07
Where we have used
tan ¢ = % sec%gb)% —%
r? =2+ 42 27’%:2x

and likewise for y.

(b)
Use the energy eigenvalue equation
H(¢) = Ed(9)

and the condition of continuity
D (¢ + 27) = (o)

we get

B —h2 dp 0  Or 0 Jdp 0  Or 0
= rcosgzﬁ( + = > —7s 1nq§(a 8¢+ 8x87’)]

:__h2 TCOS¢<CO:¢ 9 —I—Slngb ) —rsingb(

2
Squba@QS + cos p— )]

% B _singb

or r

or

e = COS ¢
n e 7z

19



where p22
n
E, =
21
and overall wavefunction is
U =®(¢)R(r)

Where the radial dependence is trivial for a rigid body diatomic molecule. The lowest three
energy eigenvalues are

h? h? h?

= 4 9

21 21 21

With (angular) wavefunctions

1 i 1 0126 1 (130

Vor Ve V2n
(c)

The perturbing Hamiltonian term is
H'=—-d-E = —Fqdsin¢
where E =|E|, d =|d|. Span it in the unperturbed basis, we get

Hjnn - <<I)m| H |cI)n>

Eqd [*™ . ,
H,,, = —% e sin(¢)e” " dg
0
Eqd [*™ . .
Hrlrm = _ﬁ el(m—n—i-l)d) . ez(m—n—l)¢ d¢
0
~ibqd

H;m - [6m+1,n - 6’m,n+1]

Which seems to have eigenstates > e |n) and eigenvalues o sin(k).

(d)

The new energies are given by, to second order

2
E — ngh_Q 1 E2q2d2] [6m+1,n - 5m,n+1]
" 21 =, 2h2 m2 — n?
G2 BRI 1 1
21 22 |[(n—12-=n%2 (n+1)2—n?
_ n2h—2 B 1 E?¢*d*I

2 4n2—1 h2

20



The lowest three energies are
n? E¢*d*I 4712 E?q*d?1 9h2 E2q?d?1
21 3h? 21 15h? 21 35h2

The only degeneracy in this system is the direction of angular momentum (+z or —z), which
is not split by the field along .

Example 3.2
In the absence of the perturbation, the system has energies

B2 [2mn)\ >
%(%) nek

Which is degenerate for left and right moving electrons with eigenstates

win: ! eq:i%%

VL

The perturbing potential V' can be spanned out in this basis as

V 2 Timx z2 TinT
an:_fo L 62 L €_¢T26_2L €T
2
L
V 5 xT mTi(m—n)x
an:_fo : e~ 2+2 (L ) de
2
Vo m2a*(m — n)? 3 f<LW)2
Vi = -7 exp <_—L2 /g e dx
Vg erf(& 2k, — k)2
Vin = — OerL(h) eXp(—a ( 1 ) ay/m

where the real error function can be absorbed into V. In each degenerate subspace consisting
of k, 4+ and k,, _, the matrix elements are

v

VJrn,fn - V(—n, +n) - _a 2- ()6_(12k’2I
\%Z

v+n,+n = V(—TL, _n> = _@

ar/TV, 1 —ak}
VTL?’L - — 0 7(12]6‘2 €
L e n 1

21



3.3

so the new energies are

En,:t -

As ka increases, the perturbing potential becomes flatter over ié, the energy degeneracy is

gradually restored.

The effect of introducing the perturbation depends on the type of boundary conditions

present.

With periodic boundary conditions, the unperturbed states are degenerate, and the per-
turbed energy is split. cos(k,z) type standing waves have lower energies becase they spend
more probability in regions of lower energy, whereas sin(k,x) type standing waves have high-

eer energies.

With hard-wall boundary conditions, however, the allowed eigenstates are nondegenerate

ViVha

- (1 n e—ag’f%)

standing waves, whose perturbed energy terms depend on their parity about the centre of
the cell (odd — higher energy and even — lower energy).

Ey

Example 3.3

The electrostatic potential energies for a point proton model and a finite volume proton are

respectively

2
- es 1
Hy=— -
0 dregr

2
N 1
H,=———2
471'80 b
B e? 1
T Admegr

for r > b (a constant potential)

forr >0

22



This is equivalent to a perturbing Hamiltonian

N e2 1 1
H, = - — = f b
te 47TEO< b) orr =

=0 forr>b

Spanning it out in 2s, 2p orbitals and working in the limit b < ay we have

N 2 1 b _r T 1 1
25| H' |25) = — /'9d9/d/d2a1—— i
(2 H[25) drreq 8ma - ¢ 0 e ap) \r b
2 b [ 2
S /dr 1—& r—
8megad J, ap b
e? /b o2 2 o
dr |r— — — — 4+ —
8mepay Jo Qo b agb
R )
C Smeead |2 3ap 3 2ag
o e?
- 48mepal
(25| H* ]2p0>:/ sm&cos@d@// ¢)drde
=0
(25| H |2p11) = / im’dqﬁ// F(r,0)drdd
=0

<2P:F1|H 12p11) = / jE“z’dgzﬁ// r,0)drdé

A e? 1 . 1
2po| H' |2po) = 0)sin(6)do [ d Pl
2l ' 2 4m()?mg/cos<>sm Jao [res(1-1)

— i 1 /br4 1" 11
e2 1 /b 5 74 r4 o
= —_—— 5 r —___+_
dmey 24ay J, Qg b agb

G T A N bo
 4meg24al\ 4 BSag b 6agh

23



et 1
 64majeo 30

¢’ L 1 1\, -
(2ps1| H' |2p11) = m/dqﬁ/sm (e)de/dr (F_E)T e

e? 8 / q , oot N rd
64ragdmrey 3 b ay agb

et 1
 64madeo 30

The energy shifts of all of these states are given by ()| H' (4| as calculaed above, even though
they are degenerate. The 2s and 2p states can be considered independently because they
have different parity. The 2p orbitals all have the same energy shifts, because they only differ
in angular distribution and the perturbation is purely radial.

Example 3.4

The perturbing Hamiltonian is
H'= —¢E -r = —eE2 = —eErcos(f)

where we have aligned the z-axis to the electric field. The ground state has no angular
dependence, so we can write

(0| H* |0) = ///r sin(6) d do dr|vo(r)|* e Br cos(6)

:_/0 sin(6) cos( dG//T d¢d7"|¢0 ’ Er

=0

The first order perturbation is thus zero. The overall perturbation up to second order is

2
(k| H"[0)]
N
> "B &
k#0
K2 10)
— E 2 |<
(eE)*) B, L,
k40
The energy of the induced dipole is
g 1 1
Edipole = _/ P(E) -dE = —§p -E = —E&EoE -E
0

24



which gives polarisability

AFE
_lgoEz

26 Z‘
o k20 Ek—EO

o =

Alternatively, the expected value of the induced dipole is
D, = <(~)‘ ez O>
S U e L | ) R EIT

L k#0 m#0
s s (0121 (] 2]0) (k]2 m) 0] 2 )
=e <T>0—|—eE Z (EO_Ek)<EO_E) —26Ezm

m,k#0

U]
=e|0—2eF O(E?)

26 ‘
Z Ek - EO

€0 %o

Using the observation that Ejy > E;, we can produce an upper bound of o by

]#£0

2¢? . .
< S 0l 2 0

1 s

2¢?

IN
—~
(31N

M)
[
&=
S~—
/

—

=

>
no

=

~

—

~——

o

~——

25



2¢2 [27r /°° 4 2 /7T 2/ s
< drrfe @ cos“(0) sin(0) do
= eo(EL — Ey) [ mad Jy 0 (6)sin(6)

2¢?

IA
Q
o

With Bohr radius ay = 5.29 x 10~ m, this estimate yields
@ <9.92x 107 m?

which is very tight on the true value of 8.5 x 1073°. This is reasonable because Ej decays
rapidly as (k 4+ 1)72. If we used Ej, — Ey < 3(E) — Ejp) to obtain an lower bound

a > 167rag

It is immediately obvious that the experimental value must lie in the same order of magnitude
as the upper/lower bound.

Example 3.5
(a)

For A = 0, writing the Hamiltonian in terms of raising and lowering (vector) operators
. mw . 7
Ay = Pz
2n mw D
. mw [ . " .
y = \| —— —
Y on \Y T

[az,a;] _ [ay,eﬂ] —1
(03] =0
a=aze, + aye,

A

b = (ala, +ala, +1>hw:(é~é+1)hw

Any energy eigenstate satisfies

H|n) = E, |n)
o H |n) = a,E, |n)
(aTaxaz + Gy + al oAyl + ax>hw In) = E,a, |n)
( L, +ala, + 1)71@% n) = (B, — hw)ay |n)

26



Hiy |n) = (E, — hw)ag n)

so we know a, |n) is also an eigenstate, which has eigenvalue F, — fw, and normalisation
given by

(nl ala In) = (o (% - 1) )

and similar for a,. Requiring ,/% — 1 to be real, we have
E, = (nx +ny + 1)7%}

The Hamiltonian is separable in x and gy, which allows us to conclude the eigenstates are
spanned by tensor product space of |n,) ® ‘ny> where both n, and n, are nonnegative. The
energy is of course degenerate for all combinations n, +n, =n

(b)
Ground state, degeneracy = 1
[4) = 102)  [0,)

First excited state, degeneracy = 2
¥) =alo) @ [1,) +B8[L)@0,) o+ p2=1
Second excited state, degeneracy = 3

[0) = al0.) ®[2,) + B1L) @ [1,) +710.) ®[2,)  o®+ 52 +4" =1

(c)

The perturbation is

H' = \yy =
a4 2m

PA (ot oV (af + 4
w(ax—l—ax)(ayjtay)

Spanning it out in the one-dimensional basis states, we have

[:]1

Mg, Nz, My Ny
—ﬂ (my| (&L + dx) |72) <my| (d; + dy) ‘ny>

C 2mw
hA
__<\/ Ng + 16mzfnzfl + v nwémzfanrl) (\/ Ny + 15myfnyfl + \/nyémyfny%»l)

C 2mw

27



3 3.6

The above expression is only nonzero if either m, —n, = m, —n, = £1, i.e. both dimensions
gain or lose 1 quantum respectively, or m, —n, = n, —m, = £1, one quantum is taken from
one dimension to the other, the toal energy is untouched.

In the £ = hw 1D (Hilbert) subspace spanned by {]OO)}, this goes to 0.

In the E = 2hw 2D (Hilbert) subspace spanned by {|10),]01)},

 9mw \ subsection 0

which splits the energy into

hA
E} =2hw+ ——
mw
In this subspace, the eigenstates of H! are
1 1
1i<0>> = ]10) £ — |01
| 75100 =5 jon)

We can then conclude to first order, the perturbed eigenstates of the lowest degenerate
FE, = 2hw level are

1 1 1 AN V2V121) £ V1V2]12)
E|10)—E|01)+E2mw 5

=)

‘1i(1)> 21) & [12))

1 1
= —[10) — — [01) + ——
5110) = = 01+ o
In the E = 3%w 3D (Hilbert) subspace spanned by {|20), |11),|02)},
Lo [0 V2o

Hl:m\/ﬁ()\/5
0 v2 0

Example 3.6
The ground state energy has

n2

Fo < (¢ (p + ) )

— T
2m 2
The trial solution A(a* — 2%), —a < x < a has to be normalised

/ dr A%(a* — 2%)* =1

—a
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/2 df A%a® cos® () = 1

[ME]
3

A%a®

sinf —

3 N 5

2sin®6  sin’® 0] 2

and the ground state energy can be estimated

@ h? d? mw?
< 2 o[ N dm 2 2 2
Eo_/_ad:cA(a :1:)( 52 T3 x)A(a z°)

15 a h2 2
< @/ da (E(cf —2?) + m;“ 2*(a? — x2)2)

—a

Extremising with respect to a,

5 h? N w? 0
4a3 m 7
2 vV/35h

 2mw

5w 1 /5
By < /222
0= 72+4\/;h“’

3 /5
Ey < -/ zhw
0> 4\/;
The result is 0.63 hw, which is slightly larger than the exact result, because the functional

form of the ground state solution is actually not quadratic but Gaussian.

Example 3.7
(a)

The ground state of an attractive potential has only radial dependence. Consider the ground
state energy of the potential V5(r),

P
Ey = (0o | =— + V2| |02)

2m
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3.7

Using |02) as a trial function for the system with potential V}, and substitute in Vi(r) <

Vo (r)we have
p? ~
E; < (0, o + V1] 102)
P ~
< <02\ P !02> + (02| V1 [02)

02\—102 /s1n9d9/d¢/v2 WOQ\ r2dr

(02| P |02> (02] V4 |05)
E, < E,

(b)

The trial function is normalised by

/1426_2)‘9”2 der =1

/-
2\
JRNE
N m

Put it in the Hamiltonian

g\/7/<h2 (2X — 4N%2?) + V (x )) 27 gy
< [%? + \/? / V(z)e 2 dx]

The condition for minimum 1is

/ “2da? g o |2 —ona? g
o + —QWA/V(a:)e dz - /V(x)x e dz =0
A3 > 1 /2\ >
Ey < \/8—/V(:z:)x2e_2)‘”” dx+§\/—/V(I)6_2M dz
T T

Sub back in

Since V(z) < 0 Vz, both terms will turn out negative, so that £y < 0. Since Ey < V(z) at
infinities of x, the wave will turn out evanecent, i.e. there is at least one bound state solution.
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Example 3.8

The probability that a system initially prepared in energy eigenstate |¢)y) at time ¢ = 0 is
subsequently found in a state ¥,, n # 0, when a weak perturbation V() is applied, is given
by ‘cn(t”?, to first order in the initial state, where

1

t
ih / =B/ (4 1V (1) [abo) !

enlt) = 5 ;

(a)
The perturbing Hamiltonian is

- t
V(t) = —eE - r = —eFEyr cosf exp (——)
-

The relevant matrix element for transition from 1s to 2s is

(25| V(t)|1s) = /// df de dr r? sin (05,11, Eor exp (—E) cos 6

= —/ stcos@d@/dgb/drr Vs 1.6 Eor exp (_E)
0

=0

vanishes, so does the probability of finding the atom in 2s state.

(b)

The relevant matrix element for transition from 1s to 2p is

(2p| V(t) |1s) = /// d6 de dr r? sin(0) 3,1 e Eor exp(—£> cos 6

re 2“06 a t
=— sin(6) cos® d&/d(ﬁ/drr —————¢k exp( )
/0 \/32mad\/Tad ’
dmeEy ( ) / d o
= —— rrte a0
3\/ 2rag P\

E 2@0 / 4 —
= — || = duu“e™
3\/_% ( )( 3 )
2% t
= _¥6E0a0 exp (—;)

Evaluate the integral to get

t 15
enlt) = —i/ ((i8E - )r 22 eloto gy
ih Jo 35
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15 t
cn(t) = 22 oty / 15 =2)
0

3%h
¢ (t) _ _2%6E0a0 6(i%_%)t —1
T .
2 2Ve?E2a2 1+ e F — 27 cos(£E)
|C"<t>‘ T T 310p2 AR 1
R T
215 2E2 2 1
len ()] (00) = =2

310 AE?+ 272

Example 3.9

The matrix element of the perturbation relevant for the transition from the ground state to
the first excited state, for t < T, is

A t
H,= {1 21— =
o= (1- )10

— /\(1 . %) (| \/E(&T—Fa) 10)
A(1-7) a1

(-7 (57c)

The wavefunction coefficient, for ¢t > T, is

1"
C1 (t) = GMt H10 dt/

i Jy
AN h T t'
e wi (g — ) dr’
ih(me) /0 ¢ ( T)

e

B A A i T _ 1 _ gl | 67;;"’:1?1
ik \ 2mw w
1 .
A h \2eT —1 —4wT
iR\ 2mw —w?2T
P 9 A 2 —2cos(wT) — 2sin(wT) + (wT)?
= Ci =
YT 9hm wi(wT)?
oscillatory
P A2 4 2 — 2 cos(wT) — 2sin(wT)
2hmw? (wT)?
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3.9

The ground state of the perturbed Hamiltonian Hy + A& is, to first order in A,

(k| Az 10)
) = joy + 32 SR

k>0

Its inner product with (1] is given by

N (1] ]0)
<1}0>_ hiw
__ A
 hw V 2mw
N2 N
] = g

which P; approaches to when w7 > 1.
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Example Sheet 4

Example 4.1
The energy of a dipole moment in a field is given by
H=-B-T

Schrodinger’s equation is therefore

0
o [(1)) = H [0(1))

o [0(0)) = ~B - (0'6) (1)
0 To -
i [(t)) = —5B- G (1))

The state |¢(O)> = cos(%) 1) + sin(%) |}) evolves in a uniform field along z direction

according to

where wy = vB,. The expectation value (ft) of the magnetic moment vector as a function of
time is

sin(#) cos(wot)
(n) = %h — sin(#) sin(wot)
cos(0)
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(i) = —g(%h> (B3]
Hi

9
ot
0 . v (vh 2 A
o i) = —ﬁ(7> (Bj2iejikdr)
o . 1 .

5 () ==z (B x )

0

h
o) = (i < B)

For the system in field aligned with z above, we have

o . Hy
a </’l’> = Bz’}/ — Mz
0

which is consistent with the result calculated previously

P y sin(6) sin(wot) Ly
5 () = —Wo sin(0) cos(wot) | = vB, | — e
0 0

The relation 2 (1) = v (it x B) resembles the classical Lorentz force 2¥ = gv x B.

Example 4.2

The total linear momentum operator of an electromagnetic field

P = " Ka i

K\

Each term in the summation acts on different wavenumber and polarisation modes, and
counts the quanta of momentum nhk in that mode. The vector space on which this operator
acts is the tensor product space of all the modes.

The annihilation and creation operators commute unless they act on the same mode

X ]
[@k',A1 gy, | = O/ kO 2

The momentum of a single of photon of wavevector k is the momentum eigenvalue associated
with the state a) , |vac)

f’dL/dvac) = Z hk/dL,7/\,&k/,,\/&LA\vac)
KN
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4 4.3

PdL/\lVaC> = E hk,dL,’)\, <CALL)\,CAI,1(/,)\ + 5k’,k5)\’,)\> |VaC>
k’,\

Paf , [vac) = hkaj , |[vac) + > BK'a, 0], fie z|vac)
k’, N

f’d;ﬂvac) = hk <€LL/\|VaC>>

where @ |0) = 0 was used. Therefore the momentum of a single photon in mode k is fik.
For the spin angular momentum operator

J = hz |k/ [ak LCLk L — CALLRCALk’R]
its eigenvalue associated with a single lefthanded photon can be calculated by
JSdLL|VaC hz |k’ [a,k O L d,Tk’de@R} dLL|VaC>

Jeaf p|[vac) = hz i [ak, Lk L |vac) + al, 0w k|vac) — aly péx Law,z|vac)

k
Jsa |Vac> |k| <ak, \vac>>
Similarly, in general, a A polarised photon has
jdeA|vac> = h|¥| (6r0 — 5)\7R)CALL/7)\|VE%C>

meaning that a photon in mode k always has spin angular momentum =45 oriented along its
wavevector, and the sign depends on its handedness.

Example 4.3
The time-evolution operator of a time-independent Hamiltonian described by annihilation
and creation operators is
[ — e itH/h _ —iwtafa
Let a|B) = p5). There is
(n|a|f) =B (n|f) = vn+1(n+1|5)

The stated evolved from |3) then has

[v(®) = U15)
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4.3

oo
d|w aZe et ny (n)B)
o0

aly(t))

Zemﬂ tn+1|n) (n+1|8)

n=

aly(t)) = e"“%Ze " |n) (n] B)
aly(t >—e*””ﬁ\w )

After time ¢, a coherent state |3) evolves into another coherent state ‘e*i“tﬁ >

(a)

(b)

(c)

In the Heisenberg picture

(Blat)|8) = (8| U'aU |8) (Bla'(t)|8) = (8| UTaTU |B)
(Bla(t) |8) = e '3 (8| UTT |B) (Bl at(t)|8) = e™'B (B U'T |8)
(Bla(t)|8) = e '3 (Bl al(t)|8) = e™'p

a'(t)|8)]

Qmw

ﬂ

— zwtﬁ + ezwtﬁ
2mw

=4/ 772;5) [cos (wt) Re(B) + sin(wt) Im(ﬂ)}

h
(81 (1) 2 Lila()18) — (814" (1) 19)]
B| p h?;lw —zwtﬂ zwtﬁ

(Blpt)|8) =V hmw[ sin(wt) Re(B) + Cos(wt) Im(ﬂ)]
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The uncertainities of a coherent state are
(@%), = (8] %°|B)

h
= 5 [a*a* toata+ 1+ aa] 18)

Qmw
_2m V”+2WI+1+B]
_2n 5, 1
= {Re(ﬁ) + Z}
(%), = (815 1)
_ _% (8| [dfgﬁ —2a'a— 1+ dd] 18)

= 2mhw [Im(ﬁf - ﬂ

(Ap)*( (<m2>ﬁ 03) (), — @)3)

(Ap)*(Az)? = vy

The uncertainity is independent of the eigenvalue associated with the state, and the uncer-
tainities reach the lower bound of Heisenberg principle ApAz > g Therefore, a coherent
state, which stays coherent throughout evolution, remains minimally uncertain. Additionally,
classical Hamiltonian equations of motion

2

i 03) _» 5= d(Gmw’a’) iy
dp m ox

are satisfied by expectation values of & and p of coherent states. All of these indicate the
expectation values of coherent states are closest quantum mechanical equivalents to classical
phase space motion.

Example 4.4

Use operator algebra

thus
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= ¢~ h4" [ﬁeﬁ‘ﬂ + eﬁ‘ﬂd}
=pB+a
Consequently 5 98
ag( “a M) o5 !

Let A
8) = Nea' |o)

Acted on by the annihilation operator it produces
Q|B) = aNe™' |0)
= NP e~ im0
= Ne®' (8 +a)|0)
= BN |0) + 0
=818

where we used a|0) = 0. Therefore |(5) is a coherent state with normalisation given by

1= (8]8)
1= N2(0] "% |0)

ATJ
L= N*{ O|Z M Z(ﬁj!) 0)

=0
1=N?{ oyz 5* Zﬁj
7=0

a2 BV BV
1=N (Oli;)i! G/
1_]\[22 ‘5‘2]

INE 0 \/ j_l
1=y

i=0

N2 — o8

_182
N:e 2

7 =)

Perhaps ¢Pa" is called the displacement operator because expectation values of  and p
of a state are shifted when acted on by eba',
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The position and momentum expectation values are given by

(&) = (8]21) B = (81519)
=%;;_wﬂ +a19) “ﬁﬁ%mh—ﬁhm
= \/227(5 +5) = @(5—6*)
= /22 Re(f) — V2mhi T (8)

Similarly,

(%), = (B12%8)

h At At .
= [aTaT toata+1 —i—aa] 18)

W[ﬂ” +218 +1+ 5]

= 2% |retop +
(), = (815 18)
2mhw

- -2 [a*a* —oata—1+ aa] 18)

= 2mhw [Im(W - ﬂ

(Apr(ac)? = (%), - @)3) (), - 03)

@WM)T

In real space, the eigenvalue equation a|5) = 8 |3) is

V%%(x+éli)¢@0=ﬁwﬂ

Let u= /5¢r = 55, we have
10
(U + 5&)%“) = B (u)
1oy
(B—u)= 20 0u
u? ln(Aflw)
fu=g =773
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(u) = AeXp(—u2 + 2ﬁu)
(u) = Ay exp(— (u— Re(ﬁ))2 +2i Im(ﬁ)u)

sub in Re(8) = 2, Im(f) = 2

(z—(x))*  i(p)
V(z) = Avexp <_ N 2AprI>

Y(z) = Ajexp <_ (Z_Ai?) d <§> x)

Where we can rename the normalisation constant A; = N, but it will not be the same
constant in (a), because dimensions are different.
In the number basis

3=0 J!
/Bj\/f —wt(j+x .
|B(t)> — Z 3 t(j+3) 17)
7=0
_jwt (eiwﬂ)j’\/ﬁ .
|B(t)) = e Z—j! 15)
j=0
|ﬁ<t)> — efi%t /Befiwt>
from this we get
2h it —iwt
(2) =\ Re(Be ™) (p) = V2mhe Im(Be ")
1
(x) = V2hmw|B| — cos(wt + ¢) (p) = —V2hmw|B| sin(wt + ¢)
which is consistent with the classical equations of motion
_ 6(%) D . d(3mw?az?) )
T = == p=——"—7""=—mwax
dp m ox

The “width” of the coherent state may(?) be defined as AzAp, which as calculated in Qu.
3, remains constant and minimal throughout time-evolution.

Example 4.5

Two angular momenta, with {; = 2, [ = 1, are added together. Using dots to represent
possible values of my, mo, and green lines to represent total angular momenta.
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M = -3 -2 -1

There are a total of 15 degrees of freedom. The degree of freedom in each M subspace
is indicated by the number of allowed states (black dots) along the green line. The total
lowering operator L_ = L; _ + L, _ can be applied to the highest magnetic quantum number
state

L, M) =3,3) = 2) [1)

to get the L = 3 states which account for a total of 7 degrees of freedom. For example, |3,2)
can be obtained as

1 1
PGSR L) |2) 1) = %(\/Zm 1) +[2) \/5\()))

13,2) = \/g|1>|1>+\/gl2>l0>

Indeed the coefficients are the same as given by Clebsh-Gordan table. The |2,2) state can
then be found as the only state orthogonal to |3,2) in the 2D M = 2 subspace spanned by

1) [1) and [2) |0),
2,2) = \/§I1> 1) - \/§!2> 10,

which can be then lowered to account for 5 states with L = 2. Similarly, there are 3 states
with L = 1. The table gives

1, -1) = \/110|0> =1) - \/%!—U 10) + \/%|—2> 1)

All degrees of freedom have been accounted for, so the possible values of L are 3,2, 1.
The scalar product of two angular momentum operators can be written as

L, Ly = LiyLoy + LiyLoy + L1, Lo,
1

1
= Z_l(LH + Ly )(Loy + Lo ) + 4—2.2(L1+ — Ly_)(Loy — Lo—) + LyyLoy + Ly, Lo,
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4.5

1
= Z(LHL% + Ly_Loy + Li_Loy + Ly Lo ) + Ly, Ly,

1
— §(L1+L2_ —|_ Ll_LQJ,-) _I_ leLQZ

The square of the total angular momentum operator can be used to verify

1
L, +Ly)* |1, 1) =(L} + L3 + (Liy Lo— + Li—Loy) + 2L, Lo,) |1, — 1)

o
—8([\0\— VRS \1)
+ (—\/%\/éﬂym —1) + \/%mmw !0>>
+ <\/1IO¢M 10—\ VeVl u>)
_4\/7|— 2)|1)

-5 |
+(8v6 - v21 - 4v6) |-2) |1>}

=2|1,-1)=(L—-1)L|1,-1)
Similarly

1
(le + L2z ) _1>

—( _1\/7|0 )|—1) — 1+o\/7\— )10) + 2+1)\/17%|—2>!1>

=—1|1,-1) = —M]|1,-1)
For [y =3, I = 1, a similar diagram can be plotted

M = 0 1 2 3 4
m2:2

M = -4 -3 =2 -1

8= 6)[0)~1) + (-8V3 + VA + V12 |-1) 0} +
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The total degrees of freedom is the sum of available states in each ladder
21=9+7+5

The possible values of total angular momentum are L = 4, 3, 2.
Each table in the Clebsh-Gordan coefficients consists of a set of orthonormal vectors which
span the subspace of a value of M. By definition, each table makes an orthogonal matrix.

Example 4.6

The Wigner-Eckart theorem states that for a spherical vector (rank-1 tensor) operator V the
matrix elements are

(1 jima| Vi [angoms) = (a1j1|‘\7‘ |aaga) (1, m; jome|jima)

(a)

For j; =1, j5 = 0, the Clebsh-Gordan coefficient reduces to simply
(1, m; jama|jima) = (1, m|j1, m1) = Omm,
Therefore, the only possible nonzero spherical components of the operator
(a1 1m]| V},, |a00)

all share the same value

(o] V‘ laaga) = A.

The spherical components

(a1, 1,0| V2 |a200)
A=< (ay,1,1] Vi |az00)
(ag, 1, —1| V.1 |az00)

can be transformed into Cartesian components by

-Vi+V,
V2
— {0, 1, 21| V1 |ag00) + (o, 1, 41| V1 |a00)
V2

(—51,11 + 5—1,i1)

V, =

(a1, 1, £1] V, |a00) =

(ay,1,£1] V, |a300) =

Sl >

(a1, 1, +1| V, |a00) =

_H
Sl =
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Vi+V,
—i\/§
(ar, 1, 21| Vi |a00) + (ay, 1, 41| V_; [a00)
—i\/§

V;J:

(1,1, £1| V, |a00) =

A A
<Oz17 1, :i:1| ‘/y |O./200> = ZE

In summary

(a1, 1,0 Vi, V,, V2) |a200) = (0,0, A)

A +1,0,0)

V2

(a1, 1,£1] (V4, V,, V2) |a200) =

(b)

For a hydrogen-like system, the matrix elements of the position operator related to transition
between 7 =0 and j = 1 are

(alm| 1t |a00)

sin 6 cos ¢

00 2m
:/ R (r)Roo(r)r d'r’/ / &) Yoo(0,0) | sinfsing | sinfdfdeo
0 cos 6
1 2 pw sin  cos ¢
=Ba, .ag—F— Y. (0, infsing | sinfddd
) \/E /(; /0 1 ( ¢) SlnCOS 0 ¢ (b

where we denoted [;° R%y (1) Rao(r)r® dr = By, q, for simplicity, substituting in m = +1,0,
we get

o sin 6 cos ¢
(a,1,£1| 1], 0,0) Bava / / \/jsm%:m’ sin@sin ¢ | sinfdf d¢
cosf
eT®sin® 0 cos ¢

1,0 Fip o340 3 .
\/; . / / eT'¥sin 0?11;¢ dfd¢

€T cos @ sin? 0
= sm 9
\/7 21,0 / 5 sin 301 do

1 By | T
= 1

vivs |,
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B o2 pw sin 6 cos ¢
(a, 1,0] 1|, 0,0) = 0‘1’0‘0/ / V3cosh | sinfsing | sinfdhde
o Jo

Am cosf
0
BOC (e} T
=3 —5 / 0 46
0 \sinfcos?0

0
— Bal,ao 0
v3 |1

Bal,ao

As expected from Wigner-Eckart theorem, with A = N

(c)

For j; = jo = 0, the inner product (1,m]0,0) = 0 always. There are no nonzero elements of
V in this subspace.

Example 4.7
(a)

The perturbation applied on a hydrogen atom by a uniform external field is
H' =&
Wigner-Eckart theorem tells us, on the level n = 3

(3lm|e€z |3U'm’) = (31|¢|

31') e€ (10; l'm"lm>
Nonzero Clebsh-Gordan coefficients require m’ +0 = m. Therefore, the operator H' is block-

diagonal when grouped according to different values of m. Using the Hermitianity of H', the
only nonzero Clebsh-Gordan coefficients that need to be found are

1 2 1
(10;10[00) = —\/; (10;10[20) = \@ (10; 1, £12, +1) = \@

which, along with the reduced matrix elements

(30[[#]]31) = 9v2ap  and  (32[|#][31) = ——=ag

5@
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_9
2 ngz =0

(b)

Diagonalising these submatrices, we first find ]:1;1 both split the unpertubed energy by
:l:%eé' ag = £FE,.
The submatric Hj has eigenvalues AE; which satisfy

2\° g\
0:—)\[)\2—(%> +< §>>\
0
+4/3+5=%2

A:

So the m = 0 subspace is split into three energies.
In summary, the 9D degenerate n = 3 subspace is split by a perturbing field into 5 energy
levels )
+2FEy my =10 nondegenerate

+1FE, my = +1 twofold degenerate
AE = ¢ +0E,; m; = £2,0 threefold degenerate
—1E, my = +1 twofold degenerate

—2F, my = nondegenerate
\

where E; = ge&zo

(c)

The highest perturbed energy level in n = 3, with AE = 4+2F,, satisfies the energy eigenvalue
equation

=|_,/8 —./4
+2)ax | = 3 \/; a2
as 4 as
3
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3

|¢>:<\300) 1310) \320>) /3 |l a

\/g
) = \/g|300> - \g|310> + \/g|320>.

Identical to Qu. 6 on example sheet 1.

Example 4.8

Example 4.9

The observed conductance oscillates periodically because the interference of electron wave-
functions are shifted by the varied magentic flux through the loop. Conductance maxima
are measured when the electrons arriving from opposite parts of the loop are in phase, and
minima when they are out of phase. Aharanov-Bohm effect relates phase difference of two
paths to the magnetic flux enclosed. The total number of oscillations over a change of field
strength by 10? Gauss is 32, so the diameter of the ring can be estimated as

ed
Rl
h
eBd?
=32
8h 3
d = 1.30 pm.
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