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Topic 1

Problem 1.1

Shine unpolarised light (e.g. sunlight) onto a reflective surface at a nonzero angle of inci-
denece. The intensity of the reflected beam, viewed through the linear polariser, will be
maximised when the transmitting axis is perpendicular to the plane of reflected beam.

Problem 1.2

E± = E1 ± iE2

E± = ei(kz−ωt)

 E1

±iE2

0


B± =

1

ω
k× E

B± =
k

ω
ei(kz−ωt)

±iE2

E1

0


The instantaneous E+ field sweeps out a left-handed helix if kz > 0.

kz E+ E−
> 0 LCP RCP
< 0 RCP LCP
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1 1.3

Problem 1.3

Jθ

(
1
0

)
=

Modulus of field strength projected along θ︷︸︸︷
cos θ

components in x and y︷ ︸︸ ︷(
cos θ
sin θ

)

Jθ

(
0
1

)
= sin θ

(
cos θ
sin θ

)

Jθ = Jθ

(
1 0
0 1

)
=

(
cos2 θ sin θ cos θ

cos θ sin θ sin2 θ

)

Problem 1.4

When light is propagated through a uniaxial birefringent material, if the refractive index is
different for different polarisation directions of the E field, the different polarisation compo-
nents traverse different optical paths which are

ωnf
d

c
ωns

d

c

respectively, where d is the thickness along the direction of propagation. d can be varied so
that the path difference is π

2
, to make a quarter-wave plate. If the principal refractiveindices

are no, no, ne respectively, the minimum thickness required for a quarter-wave plate is1

ωd|ne − no|
c

=
π

2
=⇒ d =

πc

2ω|ne − no|
=

λ

4|ne − no|

Problem 1.5

Jones vector of a general elliptically polarised 3:1 beam is

Li =

(
cos θ − sin θ
sin θ cos θ

)(
1
±3i

)
Jones matrix of a quarter-wave plate is

J =

(
1

i

)
1This is too slim for calcite to support itself. In practice, two packs of birefringent material with their

fast and slow axis aligned perpendicularly, and thickness difference equal to the calculated d0 can be used to
achieve a self-suppporting zero-order waveplate.
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1 1.6

Output beam is thus

Lo =

(
cos θ − sin θ
i sin θ i cos θ

)(
1
±3i

)

=

(
cos θ ∓ 3i sin θ
i sin θ ∓ 3 cos θ

)
Any general linearly polarised beam has no phase difference in components of L so

(cos θ ∓ 3i sin θ)(−i sin θ ∓ 3 cos θ) ∈ R
∓3 cos2 θ ∓ 3 sin2 θ − i sin θ cos θ + 9i cos θ sin θ ∈ R

cos θ sin θ = 0 =⇒ θ =
nπ

2
∀n ∈ Z

i.e. when the wave plate is alligned any integer multiple of π
4

to the incident beam a linearly
polarised beam is produced. θ → θ + π is physically invariant, so n = 0 or 1 are the only
meaningful values.

Lo ∝

(
1
∓3

)
(n = 0) or

(
∓3
1

)
(n = 1)

The possible polarisation directions of the output beam with respect to the major axis of the
incident are

± tan−1

(
1

3

)
(n = 0) or ± tan−1 (3)− π

2
= ∓ tan−1

(
1/3
)

(n = 1)

The plus and minus signs depend on chirality of the incident beams.

Problem 1.6

The beam consists of polarised and unpolarised light. The intensity Iu of the unpolarised part
is halved after passing through a linear polariser. The polarised part is elliptically polarised
with major/minor axes vertical and horizontal, with Jones vector

Lp =

±i
√

2− Iu
2√

5− Iu
2


When the beam is passed through a quarter-wave plate, the Jones vector of the polarised
part is changed to

Lo =

(
i

1

)±i
√

2− Iu
2√

5− Iu
2

 =

∓
√

2− Iu
2√

5− Iu
2
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1 1.7

Which is now linearly polarised. The unpolarised part is unaffected. Maximum intensity is
found when the subsequent linear polariser is at angle 26.6◦ with the vertical, which means

tan 26.6◦ =

√
2− Iu

2√
5− Iu

2

Iu
2

= 1 unit

The intensity transmitted in this case is

I =
(
12 + 22

)︸ ︷︷ ︸
Modulus of passed Jones vector squared

+ 1︸︷︷︸
Iu/2

= 6.00 units

Before passing through the quarter-wave plate,

Vb =
5

5 + 2
=

5

7

After passing through the plate,

Va =
5

7
still

because the wave plate does not change the intensities of the polarised nor the unpolarised
parts.

Problem 1.7

Circular polarisations of opposite handedness produce double slit interference fringes when
observed through a plane polarising filter. When the plane polariser is rotated, we get the
fringes gradually shifting in one direction. When the rotated angle reaches π

2
, new maxima

in the fringe have landed where minima used to be.

x

y

S
li
ts

x components
of E fields

Scre
en

(a) Constructive interference in x

x

y

S
li
ts

y components
of E fields

Scre
en

(b) Destructive interference in y
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1 1.8

Because of the opposite handedness, (say (1, i)T and (1,−i)T ) of light from the two slits,
if at any point on screen the waves interfere constructively in x components (Lx = 1 + 1),
they must interfere destructively in y components (Ly = i− i), vice versa.

Problem 1.8

(a)

The Jones vector of two ideal crossed linear polarisers can be written as(
0 0
0 1

)(
1 0
0 0

)
=

(
0 0
0 0

)

i.e. any light is eliminated.

(b)

The Jones matrix of a rotated waveplate is(
cos θ − sin θ
sin θ cos θ

)(
1

i

)(
cos θ sin θ
− sin θ cos θ

)

=

(
cos2 θ + i sin2 θ (1− i) sin θ cos θ

(1− i) cos θ sin θ sin2 θ + i cos2 θ

)

=

(
1− (1− i) sin2 θ (1− i) sin θ cos θ
(1− i) cos θ sin θ (1− i) sin2 θ + i

)

The resulting Jones matrix of this sandwiched waveplate is(
0 0
0 1

)(
1− (1− i) sin2 θ (1− i) sin θ cos θ
(1− i) cos θ sin θ (1− i) sin2 θ + i

)(
1 0
0 0

)

=

(
0 0

(1− i) cos θ sin θ 0

)

∝

(
0 0

1√
2

sin(2θ) 0

)

Which is consistent with our intuition: if θ = 0 or ±π
2

the resulting Jones matrix is trivial.
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1 1.9

(c)

Unpolarised light has a uniform probabilty of pointing its electric field in any direction. When
it is incident on a linear polariser, we have transmitted intensity

It =

∫ 2π

0

I

2π

∣∣∣∣∣∣
(

1 0
0 0

)(
cos θ
sin θ

)∣∣∣∣∣∣
2

dθ

=

∫ 2π

0

I

2π
cos2 θ dθ

=
I

2

Then the resulting transmission through the waveplate and the second polariser is not unlike
that of polarised light

Ifinal =
1

2
sin2(2θ)

I

2
=

sin2(2θ)

4
I

which takes maximum value I
4

at θ = π
4
.

Problem 1.9

(a)

The nonmagnetic uniaxial crystal has

E =
1

ε0

 1
εo

1
εo

1
εe

D =
D

ε0

− cos θ
εo

0
sin θ
εe

 eik·r−iωt B = µ0H = µ0He
ik·r−iωtĵ

These fields have

∇ ·D = iD(−kx cos θ + kz sin θ)eik·r−iωt

∇ ·B = µ0kyHe
ik·r−iωt

∇× E =
iD

ε0

 ky sin θ

εe

−kz cos θ
εo
− kx sin θ

εe

ky
cos θ
εo

 eik·r−iωt

∇×H = iH

−kz0
kx

 eik·r−iωt

7



1 1.9

which satisfy Maxwell’s equations provided that

k = −ωD
H

sin θ
0

cos θ


ωD2

Hε0

(
cos2 θ

εo
+

sin2 θ

εe

)
= ωµ0H

=⇒ D2

H2

(
cos2 θ

εo
+

sin2 θ

εe

)
= c−2

Rearranging, we get

k = ±ωnb
c
ω

sin θ
0

cos θ


where n−2

b ≡
(

cos2 θ
εo

+ sin2 θ
εe

)

x

y

z, the optical axis

− cos θ

D
D

sin θ

H
H

ne

n0

n0

(b)

The Poynting vector is given by

N = E×H

= −DH
2ε0

 sin θ
εe

0
cos θ
εo


8



1 1.10

which is at angle θ′ = arctan
(
εo
εe

tan θ
)

to the optical axis.

Problem 1.10

If a molecules is composed of 4 identical polarisable spheres at corners of a regular tetrahe-
dron, its mirror image cannot be distinguished from itself, so chirality is not present.

A triatomic molecule, consisting of spheres interacting by Coulomb fields, is always planar.
A planar molecule does not demonstrate chirality either.

Problem 1.11

(a)

• With the optic axis aligned with the z axis, D field is in the degenerate plane, so the
E vector will be parallel to D and hence also in the x-y plane, which gives us

ω =
c

no
k

=
πc

Lno
m m ∈ Z

L

mirror

mirror

x
no

y
no

z

ne

D

• In this case both D and E are still in x-y plane, but the x and y components of the
wave propagate at different speeds, for a stationary solution, we must have

L

mirror

mirror

x
ne

y
no

z

no

D

9



1 1.11

ω =
πc

Lno
m =

πc

Lne
n m, n ∈ Z

simultaneously, unless D is parallel to one of the principal axes.

(b)

A chiral material is fully isotropic, and its eigenpolarisations (polarisations that remain co-
herent through propagation) are LCP and RCP.

Handedness of circularly polarised lights revert upon reflection. Therefore, the boundary
condition is

ω

c/nl
L+

ω

c/nr
L =

2noωL

c
= 2mπ

ω =
πc

noωL

(c)

The total angle that a plane polarised beam is (clockwise) rotated through by a return trip
in this system is 2V B0L, and the phase change is 2kL + π. The changes in polarisation
direction and phase are fully described by the following complex matrix

− exp(i2kL)

(
cos(2V B0L) sin(2V B0L)
− sin(2V B0L) cos(2V B0L)

)

The vanishing boundary condition at the mirror requires the above to have eigenvalue −1.
i.e. λ has a solution −1 in the equation below(

cos(2V B0L) + e−i2kLλ
)(

cos(2V B0L) + e−i2kLλ
)

+ sin2(2V B0L) = 0

1 + 2ei2kLλ cos(2V B0L) + ei4kLλ2 = 0

2 cos(2kL) = 2 cos(2V B0L)

kL = ±V B0L+mπ

ω =
c

n

(
±V B0 +

mπ

L

)
m ∈ Z

10



1 1.12

L
mirror

mirror O

O

Figure 2: The boundary condition is that at both mirrors, the two waves superimpose
to 0 at all times.

Problem 1.12

The equation of motion of each electron in the plasma is

mr̈ = −e(E + ṙ×B)

where the contribution from the magnetic field in the EM wave has been neglected. The
transverse response of the electrons is thus given by

−ω2r = − e

m
(E− iωr×B)

LCP and RCP modes have respectively

rL = a

(
1
i

)
rR = a

(
1
−i

)
−iωrL ×B = ωBzrL −iωrR ×B = −ωBzrR

ω(ω − ωc)rL =
e

m
E ω(ω + ωc)rR =

e

m
E

1

ε0

PL = − ne2/mε0

ω(ω − ωc)
E

1

ε0

PR = − ne2/mε0

ω(ω + ωc)
E

1

ε0

PL = −
ω2
p

ω(ω − ωc)
E

1

ε0

PR = −
ω2
p

ω(ω + ωc)
E

DL = ε0

[
1−

ω2
p

ω(ω − ωc)

]
E DR = ε0

[
1−

ω2
p

ω(ω + ωc)

]
E

At low frequencies, ω � ωc, ω �
ω2
p

ωc

DL ≈ ε0

[
1 +

ω2
p

ωωc

]
E DR ≈ ε0

[
1−

ω2
p

ωωc

]
E

11



1 1.13

which gives us that the effective susceptibility of LCP will be (+)ve and that of RCP will be
(−)ve, so the wavevector of LCP will be real, but that of RCP will be imaginary, i.e. RCP
cannot propagate.

k =
nω

c
=

√
ε

c
ω

=
ω

c

ωp√
ωωc

=
ωp
c

√
ω

ωc

vg =
dω

dk
=

2
√
ωcω

ωp
c

Problem 1.13

The dielectric multilayer has dispersion relation

cos(qd) = F (ω) = cos(kaa) cos(kbb)−
1

2

(
kb
ka

+
ka
kb

)
sin(kaa) sin(kbb)

where ka = ωna
c

etc.

At low frequencies, we can calculate the effective refractive index neff = qc
ω

cos(qd) = 1 +
1

2
k2
aa

2 +
1

2
k2
b b

2 − 1

2

(
k2
aab+ k2

bab
)

+O(ω4)

1− 1

2
(qd)2 = 1 +

1

2
k2
aa

2 +
1

2
k2
b b

2 − 1

2

(
k2
aab+ k2

bab
)

+O(ω4 + q4)

(neffd)2 = n2
aa(a+ b) + n2

bb(a+ b) +O(ω2 +
q4

ω2
)

neff ≈

√
n2
aa+ n2

bb

a+ b

The dispersion relation is approximately periodic when ω is approximately a common multiple
of naa

c
and nbb

c
, so we expect a linear asymptote of slope equal to the low-frequency refractive

index, as in Fig. 2.26. The mid-gap frequency of the first gap can thus be estimated to be

neff
π

d
≈ π

√
n2
aa+ n2

bb

(a+ b)3

12



1 1.14

Problem 1.14

The visibility as a function of path difference is equal to

∣∣γ(d)
∣∣ =

∣∣∣∣Γ(d)

I0

∣∣∣∣
=

∣∣∣∣∣∣∣
〈
f(t)f(t− d

c
)
〉

I0

∣∣∣∣∣∣∣
Where f(t) is the superposition of two oppositely doppler shifted radiations, which has Gaus-
sian power spectra

P (ω) = P0(ω) ∗
[
δ(ω + ∆ω) + δ(ω −∆ω)

]
P0(ω) = C exp

(
−(ω − ω0)2

2σ2

)

Using Wienner-Khinchin theorem,

γ(d) = γ(τc) ∝ F−1[P (ω)]

γ(τc) ∝ F−1[P0(ω)] cos(∆ωτ)

The inverse fourier transform of a Gaussian will be another Gaussian of width c
σ
. Therefore,

the form of the visibility curve is the absolute value of a Gaussian multiplied by a cosine.
The velocity of expansion can be estimated from doppler equation (at low velocities)

∆ω =
ω0v

c

cos

(
∆ω

d

c

)
= 0 at ∆ω =

πc

2d

v =
cλ

4d
= 24.6 km s−1

The apparent line width is

δω = 2.36σ =
2.36
√

2c

lc

where lc is the coherent length, the path difference at which the visibility, unmodulated by
cosine, drops to 1

e
maximum.

lc ≈ 5.5 mm

13



1 1.15

so we have
δω ≈ 1.81× 1011 rad s−1

If the linewidth is due to thermal broadening, the temperature of the hydrogen gas shell is

σ = ω0

(
kBT

mc2

) 1
2

T =

(
σ

ω0

)2
mc2

kB

T = 7759 K

Problem 1.15

(a)

Coherence length is related to line width by

δω =
2πc

λ2
δλ

lc =
2.36
√

2c

δω

lc =
2.36
√

2λ2

2πδλ
lc = 0.16 m

(b)

The visibility of the fringes can be modelled to be

γ(d) = e
−
σ2(

return trip︷︸︸︷
2d )2

2c2 = exp

(
−4d2

l2c

)
So when one of the mirrors is moved by 10 mm and 50 mm, the visibilityof the fringes
decreases to

γ = 0.984 and γ = 0.677

respectively.

(c)

If the power spectrum is a top-hat of width ∆ω centered at ω0, the visibility function would
be

γ(d) ∝ sinc

(
d∆ω

c

)
14



1 1.16

which first falls to 0 at
d∆ω

c
= π =⇒ d =

λ2

2δλ
= 0.16 m

Problem 1.16

The width of the wire is small compared to the focal length, so we make several approxima-
tions:

θ = arcsin

(
x

f

)
=
x

f
(α =

w

f
)

the angular intensity I(θ) =
I0

α
u = kd

f

w le
n
s

sc
re
en

γ(u) =
1

I0

∫ α
2

α
2

I0

α
eiuθ dθ

=
2f sin

(
kdw
2f

)
kdw

= sinc

(
kdw

2f

)
= sinc

(
πdw

fλ

)
For the degree of coherence to be 0, the smallest separation is when

πdw

fλ
= π =⇒ d =

fλ

w
= 0.6 mm

15
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Topic 2

Problem 2.17

The gauge field A has the same symmetries as current density J. A dipole moment along
Oz corresponds to a current loop whose only nonzero J component is constant along in φ.
Therefore,

∇×A =
1

r2 sin θ

 ∂
∂θ

(
r sin θAφ

)
−r ∂

∂r

(
r sin θAφ

)
0


∇×A =

1

r2 sin θ

 ∂
∂θ

(
r sin θAφ

)
−r ∂

∂r

(
r sin θAφ

)
0

 =
µ0m

4πr3

2 cos θ
sin θ

0


∂

∂θ

(
sin θAφ

)
=
µ0m

4πr2
sin(2θ)

sin θAφ = −µ0m

4πr2

cos(2θ)

2
+ f(r)

− sin θ
∂

∂r

(
rAφ

)
=
µ0m

4πr2
sin2(θ)

rAφ =
µ0m

4πr
sin(θ) + g(θ)

Aφ =
µ0

4π

m

r2
sin θ + const.

Problem 2.18

Evaluate the divergence for the two fields.

1.
∂

∂xi

1

r3
= −3xi

r5

∇ ·B =
B0b

r3

[
−3x(x− y)z

r2
+ z − 3y(x− y)z

r2
− z − 3z(x2 − y2)

r2

]

= −B0b

r3

[
6z(x2 − y2)

r2

]
which is nonzero and therefore disobeys Maxwell’s equations.

16



2 2.19

2.

∇ ·B = B0b
2

[
z ∂r

2

∂r

(b2 + z2)2r
− 2z

(b2 + z2)2

]
= 0

This field is plausible because it obeys Maxwell’s equations.

For the field in (b)

µ0J =∇×B

= B0b
2

 0
r

(b2+z2)2
− 4z2r

(b2+z2)3

0


=
B0b

2r(b2 − 3z2)

(b2 + z2)3
φ̂

∇×A = B −∂Aφ
∂z

0
1
r

∂(rAφ)

∂r

 = B0b
2

 zr
(b2+z2)2

0
1

b2+z2


A =

B0b
2r

2(b2 + z2)
φ̂ + const.

Problem 2.19

Probe the direction of polarisation of E field at a point r from the box. Then, move in the
direction r× E.

• If the electric field strength does not change along this direction, the dipole is electric.
Move along the direction of E to find the plane which maximises field strength or
radiation power. The normal to the plane will be the direction of the dipole (and also
the direction of polarisation at that point).

• If the electric field strength did change, the dipole is magnetic. Move along r×E, find
the plane at which radiation is maximised, and the direction of magnetic dipole is the
normal of the plane or ‖ r× E.

Assuming the length sacle of the antenna is the same as that of the box, the power dependence
on the current for electric and magnetic dipoles can be calculated as

〈PE〉 =
ω4( 〈I0〉d

ω
)2

12πε0c3
〈PM〉 =

µ0ω
4(I0d

2)2

12πc3
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2 2.20

respectively. If the power supplies are replaced with a matched load, the box can still be
illuminated with microwaves, and the reradiated (scattered) signal will have the same patterns
as emitted signal.

Problem 2.20

The farfield expansion of the vector potential corresponding to magnetic dipole is

A(r) =
µ0

4π

eikr

r
(−ik)

∫
J(r′)(r̂ · r′) dV

A(r) =
µ0

4π

ikeikr

r
r̂×m

where m is the magnetic dipole moment, and r̂ is the unit vector parallel to r.

For a dipole in the x-y plane rotating about the z axis at angular frequency ω, working
in cylindrical coordinates, we have

m =
m0√

2

 ei(ωt+φ0+φ)

iei(ωt+φ0+φ)

0


A(r) =

µ0

4π
ikeikr

m0√
2

ρ
r

0
z
r

×
 ei(ωt+φ0+φ)

iei(ωt+φ0+φ)

0


=
µ0

4π
ikeikr

m0√
2

− z
r
iei(ωt+φ0+φ)

z
r
ei(ωt+φ0+φ)

ρ
r
iei(ωt+φ0+φ)


=
µ0

4π

ikeikr

r

m0√
2
ei(ωt+φ0+φ)

−izz
iρ


B = −ikA× n

B =
µ0

4π

k2eikr

r2

m0√
2
ei(ωt+φ0+φ)

−izz
iρ

×
ρ0
z


B =

µ0

4π

k2eikr

r2

m0√
2
ei(ωt+φ0+φ)

 z2

−ρ2 + iz2

−zρ
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2 2.21

1. In the x-y plane

B =
µ0

4π

k2eikr

r2

m0√
2
ei(ωt+φ0+φ)(−ρ2φ̂)

E = −∂A
∂t

E = −i µ0

4π

ωkeikr

r

m0√
2
ei(ωt+φ0+φ)ρẑ

The radiation pattern is circular and the polarisation of the electric field is parallel to
Oz.

2. The direction of polarisation, at an angle θ to Oz, is parallel to the vector

− cos(θ)ρ̂− i cos(θ)φ̂ + sin(θ)ẑ

=
[
− cos(θ) sin(θ) + sin(θ) cos(θ)

]
r̂− i cos(θ)φ̂ +

[
− cos2(θ)− sin2(θ)

]
θ̂

=− i cos(θ)φ̂− θ̂

which is always perpendicular to r̂, the direction of outward propagation of the wave.

Problem 2.21

Assuming one of the principal axis of rotation of the magnet is parallel to z-axis, the rotational
kinetic energy at any instant is given by

Ek =
1

2
Iω2

The formula for radiation loss for an oscillating magnetic dipole is

〈PM〉 =
µ0M

2

12πc3
ω4

The rotating magnetic dipole M can be decomposed into two orthogonal dipoles oscillating
in phase quadrature, which contribute to the total power independently.

PM = 2 〈PM〉 =
µ0M

2

6πc3
ω4 = Cω4

For ω̇ � ω2, kinetic energy changes over a time scale much greater than the period of rotation,
such that the instantaneous power can be approximated by the average over a period

PM =
dEk
dt
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2 2.22

Cω4 = Iωω̇

d

dt

(
C

I

)
=

d

dt

(
ω̇

ω3

)
0 =

ω̈ω3 − 3ω2ω̇2

ω6

ω̈ω = 3(ω̇)2

For the pulsar in the Crab Nebula, the period T = 33 ms and Ṫ = 36 ns/day. Assume that
it is a sphere (of uniform density) with radius 7 km and a mass equal to that of the Sun
(2× 1030 kg). We have

ω =
2π

T

ω̇ =
2πṪ

T 2

Substituting in

µ0M
2

6πc3
ω4 =

2

5
msR

2ωω̇

M =

√
12msR2ω̇πc3

5µ0ω3

M = 2× 1027 A m2

Near the equator the magnetic field is azimuthal,

Bθ =
µ0M

4πR3

Bθ = 7× 108 T

Problem 2.22

Radiation resistance is the effective resistance Rr of an antenna, such that

〈P 〉 ≡
〈
I2
〉
Rr

The power gain of an antenna is the angular distribution of time-averaged radial Poynting
flux, normalised to 4π

G(θ, φ) =
4πN(θ, φ)∫∫

N(θ, φ) sin θ dθ dφ
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2 2.22

For a plane wireloop of area a2, the time-averaged radial Poynting flux is

N(θ, φ) =
〈
r2n̂ · (E×H)

〉
(θ, φ)

=

〈
r2Z0k

2

4π
eikr sin θIa2 k

2

4π
eikr sin θIa2

〉

=
Z0ω

4 sin2 θ

16π2c4
a4
〈
I2
〉

Normalising the essential angular distribution, we get

4π =

∫∫
G(θ, φ) sin θ dθ dφ = A

∫∫
sin3 θ dθ dφ

2 = A

∫ π

0

sin3 θ dθ

2 = A

[
− cos θ +

cos3 θ

3

]π
0

G(θ, φ) =
3

2
sin2 θ

Integrating over the unit sphere, we get

〈P 〉 =
8π

3

Z0ω
4

16π2c4
a4
〈
I2
〉

〈P 〉 =
Z0ω

4

6πc4
a4
〈
I2
〉

Rr =
µ0ω

4

6πc3
a4

By conservation of energy, the cross-section of combined scattering and absorption is the
total power per incident electromagnetic flux density

σ =
〈P 〉
〈Ninc〉

=

〈
V 2
〉
/2Rr

〈B2〉 c/µ0

=

〈
(ωBa2)2

〉
/2Rr

〈B2〉 c3ε0

=
ω2a4

c3ε0

3πc3

µ0ω4a4

=
3πc2

ω2
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2 2.23

Problem 2.23

For our purposes, the Earth can be estimated to be flat. The mass of gas above unit area of
earth relates to atmospheric pressure

m

A
=
patm

g

The atmosphere can be modelled as an ideal gas of volumeric composition 1
5

Oxygen and 4
5

Nitrogen, which gives number per area

m

A
=

(
mO2

5
+

4mN2

5

)
N

A

N

A
= 2× 1029 m−2

On the assumption that a molecule can be represented as a perfectly conducting sphere with
polarisability α = 4πr3ε0 of radius 0.1 nm, the phase change of ultraviolet radiation with
wavelength λ = 320 nm over individual molecules can be neglected. We are therefore in
Rayleigh scattering regime. Ignoring multiple scattering

〈P 〉sc
〈P 〉in

=
σsc 〈N〉
A 〈N〉

=
1

A

µ2
0ω

4α2N

6π

=
µ2

0ε
2
0(2πc)416π2r6

6πλ4

N

A

=
28π5r6

6λ4

N

A
≈ 25%

The molecules are randomly directed, so half of the re-radiated light are scattered away from
earth, giving

〈P 〉lost

〈P 〉in
=

25%

2
= 13%

Problem 2.24

Cambridge is 52◦ N. Assume the Sun, a point (far) source, is coplanar with the equator of
the Earth on March 21. At noon, Cambridge is nearest the Sun, sunlight, arriving at the
atmosphere parallel to the equator, is scattered by the piece of atmosphere above Cambridge
through an angle α = 52◦. The degree of polarisation is therefore

P =
1− cos2 α

1 + cos2 α

P = 45%
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