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2 RELATIVISTIC KINEMATICS

Topic 1 Matter and forces

Problem 1 Classification of particles

Generally, elementary particles can be classified into bosons, which have integer spin, and
fermions, which have half integer spin.

In the Standard Model, all matter is made up of fundamental Fermions, which consist of
three generations (replica) and corresponding antiparticles of leptons and quarks. Lepton
particles include electron, muon, and tauon, and three corresponding neutrinos. Quark
particles include the up and down, the charm and strange, and the top and bottom quarks.
Quarks do not exist as free particles, they are confined within hadrons, which consist either
of a quark and an antiquark (meson), or of three quarks (baryon).

Force (Strong and Electro-Weak) is mediated by gauge bosons, which are vector bosons
of spin 1. The gluons mediate strong force, the photon mediates electromagnetic force, and
the W and Z bosons mediate weak force.

Topic 2 Relativistic kinematics

Problem 2 Natural units

Natural units in particle physics are defined by setting ~ = c = 1, and choosing eV as the
unit of measurement for energy, such that time, length, and mass follow from [E] = [~

t
] =

[~c
x

] = [mc2].

(a)

For a pion, the reduce compton wavelength is

λ =
1

mπ

= 7.16× 10−3 MeV−1

=
~c
mπc2

= 1.41× 100 fm

(b)

A cross-section is written in natural units

σ =
4

3

πα2

s

Given s = m2
Z , mZ = 91.2× 103 GeV

σ = 2.68× 10−14 MeV−2
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2 RELATIVISTIC KINEMATICS 3

=
4

3

πα2~2c2

s2

= 1.04× 10−39 m2

= 1.04× 10−11 m2

Problem 3

A particle X decays into two particles a and b.

(a)

Mass-energy is conserved in the reaction. In rest frame of X, momenta of a and b are opposite
and equal.

Ea + Eb = mX

p2
a = p2

b

E2
a −m2

a = E2
b −m2

b

E2
a = m2

X + E2
a − 2mXEa +m2

a −m2
b

Ea =
m2
X +m2

a −m2
b

2mX

Similarly particle b has

Eb =
m2
X +m2

b −m2
a

2mX

If the two particles have identical mass (are the same or antiparticles of each other),

Ei =
mX

2
i ∈ {a, b}

(b)

The momenta of a and b are both equal to

p2
a = E2

a −m2
a

p2
a =

m4
X +m4

a +m4
b + 2m2

Xm
2
a − 2m2

Xm
2
b − 2m2

am
2
b

4m2
X

−m2
a

pb = pa =

√
m4
X +m4

a +m4
b − 2m2

Xm
2
a − 2m2

Xm
2
b − 2m2

am
2
b

2mX

If the masses are the same

pa = pb =

√
m2
X − 4m2

a

2
If particle b is massless

p =

√
m4
X +m4

a − 2m2
Xm

2
a

2mX

=
m2
X −m2

a

2mX
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2 RELATIVISTIC KINEMATICS 4 Omega baryon decay

(c) The HERA collider at DESY provided head-on collisions between an electron beam of
27.5 GeV and a proton beam of 920 GeV.

Let a be electron and b be proton. The oppositely-directed momenta of the proton and
electron are

p2
a = 7.56× 108 MeV2

p2
b = 8.46× 1011 MeV2

The center-of-mass energy squared

s = (Ea + Eb)
2 − (pa + pb)

2

s = 2EaEb + 2papb +m2
a +m2

b

s = 1.01× 1011 MeV2

is invariant. In the frame where the proton is at rest

s =
(
E ′a +mb

)2 − p′a2

s = m2
a +m2

b + 2E ′amb

E ′a =
s−m2

a −m2
b

2mb

E ′a =
EaEb + papb

mb

E ′a = 5.39× 107 MeV

The Higgs boson of mass 125 GeV is less than
√
s, meaning HERA would have had sufficient

energy to produce it.

Problem 4 Omega baryon decay

(a)

If the process γ → e+e− were possible, we would be able to describe this in the zero mo-
mentum frame of the product particles. However, in this frame, the momentum of photon
would be zero, while its energy is nonzero. Therefore, the process is proven to be forbidden
in vacuum by violation of E = pc.

In the presence of matter, this is possible because temporarily unconserved energy can
be compensated by electromagnetic interaction with background charge. In a Feynman
diagram, this is represented by a virtual electron/positron becoming real by exchanging a
virtual photon with liquid Hydrogen.
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3 DECAYS AND REACTIONS

and

The momentum of Ω− squared is

p2
Ω = |p1 + p2|2

= p2
1 + p2

2 + 2p1p2 cos(71◦)

= 4.061× 106 MeV2

pΩ = 2.015× 103 MeV

Its energy is the sum of E1 and E2, so

EΩ =
√
m2

1 + p2
1 +

√
m2

2 + p2
2

E2
Ω = 6.914× 106 MeV2

Giving its mass

mΩ =
√
E2 − p2 = 1.689× 103 MeV

(b)

γ of the Ω particle is

γ =
E

m
and its speed is

v =
p

γm

so its proper lifetime is

τ =
l

γv

=
lm

p

= 6.99× 10−11 s

Topic 3 Decays and reactions

Problem 5 Radioactive decay

N.B. In this question τs are mean-lifes.

6



3 DECAYS AND REACTIONS 6 Caesium decay

(a)

Bt time t, the proportion of 198Au that were produced at t′ which is left is

e−
1
τ

(t−t′)

so given a reaction rate of R = 1010 s−1, the total number N of 198Au atoms after t = 6 days
is

N =

∫ t

0

e−
1
τ

(t−t′)R dt′

= 8.64× 1014 × e−6/4 × 4×
(
e6/4 − 1

)
= 2.68× 1015

(b)

The number NHg is equal to the number of reacted 198 Au atoms, which is given by

NHg = Rt−N
= 2.50× 1015

(c)

The equilibrium number 198Au is

Neq = lim
t→∞

8.64× 1014 × e−t/4 × 4×
(
et/4 − 1

)
= 8.64× 1014 × 4 = 3.456× 1015

Problem 6 Caesium decay

N.B. In this question τs are half-lifes.

The rate equations

dNCs

dt
= −λCsNCs

dNBa

dt
= −dNCs

dt
− λBaNBa

dNLa

dt
= λBaNBa

the maths are analogous to 1.5

NBa(t) =

∫ t

0

exp
(
−λBa(t− t′)

)
λCsNCs(0) exp

(
−λCst′

)
dt′

7



3 DECAYS AND REACTIONS 7 Kaon decay

NBa(t) = λCsNCs(0) exp(−λBat)
∫ t

0

exp
[
+(λBa − λCs)t′

]
dt′

NBa(t) =
λCsNCs(0)

λBa − λCs
[
exp(−λCst)− exp(−λBat)

]
Maximum activity occurs when NBa is maximum, which is when

λCs exp(−λCst)− λBa exp(−λBat) = 0

t =
1

λBa − λCs
ln

(
λBa
λCs

)
= − 1

ln(2)/τBa − ln(2)/τCs
ln

(
τBa
τCs

)
= 33.5 min

ABa = λBaNBa = λCsNCs(0)

(
λCs
λBa

) λ2
λ1−λ2

= 0.0866 mCi

Problem 7 Kaon decay

N.B. In this question τs are mean-lifes.

(a)

Use ~ = 6.6× 10−16 eV s, the total width of K+ is

~
τ

= 5.5× 10−8 GeV

and the branching ratio of the particular decay with partial width 1.2× 10−8 GeV

1.2

5.5
= 21.8%

(b)

Mass of Kaon is 493 MeV, so the fraction which hasn’t decayed is

exp

(
−m∆x

pτ

)
= 0.25

(c)

In the zero momentum frame of the decay, the momentum of π+ can be quoted from problem
1.3

2×
√
m2
π + p2

π(0) = mK+

pπ(0) =

√
m4
K+ +m4

π+ +m4
π0 − 2m2

K+m2
π+ − 2m2

K+m2
π0 − 2m2

π+m2
π0

2mK+
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3 DECAYS AND REACTIONS 8 Cross-sections

Eπ(0) =
√
p2
π(0) +mπ(0)

The zero momentum frame and the lab frame are related by

β =
p

E
=

√
1

1 + m2

p2

and

γ =

√
1

1− β2
=

√
p2 +m2

m2

where p and E are momentum and energy of the Kaon. The ambiguity of the energy of
pion in lab frames arises from the arbitrary direction of pπ in the ZMF. The maximum and
minimum values occur when pπ is collinear with p.

max(Eπ) = γEπ(0) + γβpπ = 9.19× 103 MeV

min(Eπ) = γEπ(0) − γβpπ = 0.88× 103 MeV

Problem 8 Cross-sections

Total cross-section of a state is the sum of all process cross-section from the state to another.
Differential cross-section is the angular distribution of the effective target area.

(a) transmission

The nonelastic cross-section is

σne = 270× 10−28 m2

the total number of elastically scattered and non-scattered neutrons is

Nt = I(1− σned(thickness)
1

m235U

)

= 9.93× 104 s−1

(b) fission

Nfi = Iσfid
1

m235U

= 5.12× 102 s−1

(c) elastic scattering

Φe =
Ne

4πR2
= Iσed

1

m235U

= 2.04× 10−5 m−2 s−1

9



3 DECAYS AND REACTIONS 9 Breit-Wigner formula

Problem 9 Breit-Wigner formula

The Breit-Wigner formula for a reaction cross-section is given by

σ(E) =
πg

p2
i

ΓZ→iΓZ→f
(E − E0)2 + Γ2/4

• pi is the momentum of the incoming particles in zero momentum frame.

• E is the total energy of colliding particles in zero momentum frame.

• E0 is the energy of the intermediate state Z.

• ΓZ→i,f are the partial decay rates from Z to i, f

• Γ is the total decay rate of Z.

• g is the fraction of spin of i that coincides with spin Z over the total number of spin
states of i.

The Breit-Wigner formula is the product of the density of states and the modulus squared of
the matrix element of the transition, which is derived from second order perturbation theory.
The damping term in the Lorentzian comes from the decaying probability of the Z state.

For elastic process, both i and f are n+ 123 Te,

σn(E) =
πg

p2
i

Γ2
n

(E − E0)2 + Γ2/4

=
Γn
Γγ

πg

p2
i

ΓnΓγ
(E − E0)2 + Γ2/4

=
Γn
Γγ
σγ(E)

= 7.4× 103 b at resonance

Given “neutron energy” = 2.2 eV much less than the rest mass energy, assuming this is the
non-relativistic kinetic energy in ZMF

pi =
√

2mnEnonrelativistic
n = 6.43× 104 eV

substituting into Breit-Wigner formula

σγ(E) =
πg

p2
i

ΓnΓγ
(E − E0)2 + Γ2/4

g =

(
π

σresonance
γ p2

i

ΓnΓγ
Γ2/4

)−1

10



3 DECAYS AND REACTIONS 9 Breit-Wigner formula

g = 0.78

J124Te =
1

2

[
g(2J123Te + 1)(2Jn + 1)− 1

]
J124Te =

1

2
[4g − 1]

J124Te = 1.05 ≈ 1

The spin of 124Te is 1.
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4 COLLIDERS AND DETECTORS

Topic 4 Colliders and detectors

Problem 10 Detector signatures

12



4 COLLIDERS AND DETECTORS 10 Detector signatures
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4 COLLIDERS AND DETECTORS 10 Detector signatures

(a) e+e− → µ+µ−e+e−

e−

γ µ

γ

e+

(b) e+e− → µ+µ−γ

γ

γ

µ

e

(c) e+e− → ννγ

γ

Z
ν

e

(d) e+e− → τ+τ−, τ− → e−νeντ , τ+ → π0π+ντ

τ

e−

ντ

u

Z

νe

d

ue

u

W−
ντ

W+

14



5 FEYNMAN DIAGRAMS AND QED 11 Detector resolution

Problem 11 Detector resolution

(a)

In the tracking detector
σp
p
∝ p

Muon mass is 6 eV� 1 GeV so p ≈ E. If the momentum accuracy is 1% for 1 GeV muons,
it is 20% for 20 GeV muons.

(b)

In the calorimeters (both ECAL and HCAL)

σE
E
∝ E−1/2

Given the energy resolution for 1 GeV electrons in the electromagnetic calorimeter is 0.5%,
the energy resolution for 10 GeV electrons is

σE
E

= 0.5%× 11/2 × 10−1/2 = 0.16%

Topic 5 Feynman diagrams and QED

Problem 12 QED diagrams

(a)

γ

γ

e+

e−

matter

and

γ

γ

e−

e+

matter

(b)

t:

e−

e−

u:

e−

e−

15



5 FEYNMAN DIAGRAMS AND QED 12 QED diagrams

(c)

s:

e−e−

e+ e+
t:

e+

e−

(d)

µ−

µ+

γ

e+

e−

(e)

t: γe+

γe−

u:

γ

e+

γ

e−

(f)

γγ

γ γ

The middle square is in principle the sum over time orderings of any charged fermion, but is
dominated by the electron which is the lightest.
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5 FEYNMAN DIAGRAMS AND QED 13 Pion decay

Problem 13 Pion decay

(a)

The π0 predominantly decays to γγ

u or d

u or d γ

γ

The coupling strength is
(
Qq

√
α
)2

= Q2
qα.

The pion also decays to e+e−γ via (the dd pion is analogous)

u

e−

e+

u

γ

γ

The coupling strength is 2Q2
q

√
αQq

√
α
√
α = 2Q2

q

√
α3. It gains a factor 2 because there are

two photons that can pair-create.

Or, to e+e−e+e− via

u
e−

e+

e+

e−
u γ

γ

coupling strength Qq

√
αQq

√
α
√
α
√
α = Q2

qα
2.

Or to e+e−

17



5 FEYNMAN DIAGRAMS AND QED 14 Drell-Yan

e−

u e+

γ

u

or
u

u γ

γ

The left is the lowest order, but the meson which has Jp = 0− does not have the appropriate
spin to annihilate to a photon which has spin ±1.

Ignoring propagator effects, the branching factors are roughly proportional to the coupling
strengths squared.

Γγe+e−

Γγγ
:

Γe+e−e+e−

Γγγ
:

Γe+e−

Γγγ
≈ 4

137
:

1

1372
:

1

1372
≈ 2.9% : 5.3× 10−5 : 5.3× 10−5

which do not coincide with 1.2%, 3.2× 10−5, and 2× 10−7 respectively.

(b)

The ρ0 meson is 1√
2

(
uu− dd

)
, its decay to e+ e− are also, to the lowest orders

e−

u e+

γ

u

or
u

u γ

γ

The ρ0 has Jp = 1− so the left diagram is allowed. The expected ratio of partial widths to
the two decays π0 → e+e− and π0 → e+e−, based only on coupling strengths, is(

Qq

√
αQq

√
α
√
α
√
α
)2

:
(
Qq

√
α
√
α
)2

= 1 : 1372 = 1 : 1.8× 104

The real ratio between these partial widths are

Γπ0→e+e− : Γρ0→e+e− =
2× 10−7

8.4× 10−17
~ :

4× 10−5

4.4× 10−24
~ = 1.56 µeV : 5.98 keV

The ratios do not coincide.

Problem 14 Drell-Yan

The typical Drell-Yan process is the Feynman diagram

18



5 FEYNMAN DIAGRAMS AND QED 14 Drell-Yan

q

q

γ

l

l

The following hadron-hadron interactions are compared for their cross-sections (the colours
of the annihilating quark-antiquark pair must match so overall every coupling strength is
suppressed by a factor of 3 which does not effect ratios)

1. The π+ is bound state of ud and p is bound state of uud. The only quark-antiquark
pair is d and d. The cross-section is (proportional to)

(Qd

√
α)2 =

1

9
α

2. The π+ is bound state of ud and n is bound state of udd. The total Drell-Yan cross-
section is the sum of two possible combinations of d and d

(Qd

√
α)2 + (Qd

√
α)2 =

2

9
α

3. The π− is bound state of du and p is bound state of uud. The total Drell-Yan cross-
section is the sum of two possible combinations of d and u

(Qu

√
α)2 + (Qu

√
α)2 =

8

9
α

4. The π− is bound state of du and n is bound state of udd. The only quark-antiquark
pair is u and u. The cross-section is

(Qu

√
α)2 =

4

9
α

The Drell-Yan cross-sections of these interactions are therefore expected to be in the ratio
1 : 2 : 8 : 4.

pp is not expected to have any first order Drell-Yan interaction because no antiquark is
bound in p. pp has 4 possible uu pairs and 1 dd pair, so it is expected to have cross-section
proportional to

4× (Qu

√
α)2 + (Qd

√
α)2 =

17

9
α

which is 17 times the Drell-Yan cross-section of π+p.
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6 QCD AND THE QUARK MODEL

Topic 6 QCD and the quark model

Problem 15 Spin and parity

Both strong and electromagnetic interactions conserve parity. The parity of the l = 0 pionic
atom

PπPd(−1)l = PπPd = Pπ

is thence equal to the parity of the product

Pnn = PnPn(−1)lend

Given that the pion is spinless and has no angular momentum in s orbital, the Deuteron has
spin 1, conserving angular momentum at the end requires

j = 1

Neutrons are spin-1
2

fermions so their end state is overall antisymmetric. If their spin parts
are symmetric, their spatial part must be antisymmetric =⇒ lend is odd. If their spin parts
are antisymmetric =⇒ s = 0 =⇒ lend = j = 1 =⇒ spatial part is also antisymmetric,
which disobeys overall antisymmetry of fermions.

Hence the final state must have odd lend and negative overall parity, and

Pπ = Pnn = −1.

Problem 16

(a)

Using

Mqq = m1 +m2 + A
S1 · S2

m1m2

and

S1 · S2 =
1

2
S2 − 3

4

20



6 QCD AND THE QUARK MODEL 16

Meson quark content Jp S2 S1 · S2 predicted mass / MeV

π ud 0− 0 −3/4 140
K us 0− 0 −3/4 484

η 1√
6

(
uu+ dd− 2ss

)
0− 0 −3/4 559

ρ ud 1− 2 1/4 780

ω 1√
2

(
uu+ dd

)
1− 2 1/4 780

ω 1√
2

(
uu+ dd

)
1− 2 1/4 780

K us 1− 2 1/4 896
φ ss 1− 2 1/4 1032

where masses of particles with mixed quark contents are generalised to

M = 〈M〉 =
∑
i

PiMi

where Pi are the probabilities of a particular quark content state and Mi the corresponding
mass.

For η′ = 1√
3

(
uu+ dd+ ss

)
, S1 · S2 = −3/4

M =
1

3
(140 + 140 + 768) = 349 MeV

(way off from measured mass 958 MeV)

(b)

The total spin of any pair of quarks in the J = 3
2

baryon decuplets must all be 1 so that the
total spin quantum number adds up to 3

2
. With

Mqqq = m1 +m2 +m3 + A′
S1 · S2

m1m2

+ A′
S1 · S3

m1m3

+ A′
S2 · S3

m2m3

Baryon quark content predicted mass / MeV measured mass / MeV

∆ ddd 1230 1232
Σ dds 1377 1385
Ξ dss 1529 1533

Ω− sss 1687 1672
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6 QCD AND THE QUARK MODEL 17 Proton and neutron moments

Problem 17 Proton and neutron moments

(a)

The total wavefunction of 3 indistinguishable quarks

ψ = ψspaceψcolourψflavourψspin

has to be antisymmetric. All the baryon ground states l = 0 have symmetric space compo-
nents and antisymmetric colour components, so the flavour and spin parts combined have to
be symmetric.

For the two u quarks in proton, the flavour part is already symmetrised so their spins are
also symmetric, so

ψuu = u ↑ u ↑ or u ↓ u ↓ or
1√
2

(u ↑ u ↓ +u ↓ u ↑)

The first two are evidently |S, Sz〉 = |1,±1〉, and the third is proportional to |1, 0〉, seen by
acting the ladder operator S− = S1− + S2− onto the first state.

(b)

The total spin of uu must be 1, so the proton wavefunction can be seen as a composite
of two subsystems of spin 1 and spin 1

2
respectively. Proton has total spin 1

2
, using the

Clebsch-Gordan table we find for J, sz = 1
2
, 1

2
,

ψp

(
sz = +

1

2

)
=

√
2

3
|1, 1〉uu

∣∣∣∣12 ,−1

2

〉
d

−
√

1

3
|1, 0〉uu

∣∣∣∣12 , 1

2

〉
d

=

√
2

3
u ↑ u ↑ d ↓ − 1√

6
(u ↑ u ↓ +u ↓ u ↑)d ↑

=
1√
6

(2u ↑ u ↑ d ↓ −u ↑ u ↓ d ↑ +u ↓ u ↑ d ↑)

Similarly, the neutron wavefunction is symmetric under exchanging the two down quarks and
its total spin is 1

2
,

ψn

(
sz = +

1

2

)
=

1√
6

(2u ↓ d ↑ d ↑ −u ↑ d ↑ d ↓ +u ↑ d ↓ d ↑)

(c)

Quarks are point-like spin-1
2

elementary particles, their magnetic moments are

µq =
qqŜz
mq

= ± qq~
2mq
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6 QCD AND THE QUARK MODEL 17 Proton and neutron moments

The baryon magnetic moment operator is µb =
∑
µq over all quarks. For mixed states this

is

µb = 〈ψ|µb |ψ〉

Assuming both the up and down quarks have the same mass mq,

µp =
4

6

(
2

3
+

2

3
+

1

3

)
e~

2mq

+
1

6

(
2

3
− 2

3
− 1

3

)
e~

2mq

+
1

6

(
−2

3
+

2

3
− 1

3

)
e~

2mq

=
e~

2mq

µn =
4

6

(
−2

3
− 1

3
− 1

3

)
e~

2mq

+
1

6

(
2

3
− 1

3
+

1

3

)
e~

2mq

+
1

6

(
2

3
+

1

3
− 1

3

)
e~

2mq

= −2

3

e~
2mq

thence
µp
µn

= −3

2
.

(d)

The predicted ratio of proton and neutron magnetic moments above of −1.5 is not too far
away from expected ratio −2.79µN

1.91µN
. To fit the observed values, fix the quark masses

µp =
4

6

(
2md

3mu

+
2md

3mu

+
1

3

)
e~

2md

+
1

6

(
2md

3mu

− 2md

3mu

− 1

3

)
e~

2md

+
1

6

(
−2md

3mu

+
2md

3mu

− 1

3

)
e~

2md

µp =
8

9

e~
2mu

+
1

9

e~
2md

=

(
8

9

mp

mu

+
1

9

mp

md

)
µN = 2.79µN

µn =
4

6

(
−2md

3mu

− 1

3
− 1

3

)
e~

2md

+
1

6

(
2md

3mu

− 1

3
+

1

3

)
e~

2md

+
1

6

(
2md

3mu

+
1

3
− 1

3

)
e~

2md

µn = −2

9

e~
2mu

− 4

9

e~
2md

= −
(

2

9

mp

mu

+
4

9

mp

md

)
µN = −1.91µN

=⇒ mu = 0.36mp md = 0.34mp

(e)

The wavefunctions of Σ+ and Σ− in their sz = +1
2

states are completely analogous

ψΣ+ =
1√
6

(2u ↑ u ↑ s ↓ −u ↑ u ↓ s ↑ +u ↓ u ↑ s ↑)

ψΣ− =
1√
6

(2d ↑ d ↑ s ↓ −d ↑ d ↓ s ↑ +d ↓ d ↑ s ↑)

so

µΣ+ =
1

6

(
4

4

3

e~
2mu

+ 2
1

3

e~
2ms

)
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6 QCD AND THE QUARK MODEL 18

µΣ+ =
1

6

(
−4

2

3

e~
2md

+ 2
1

3

e~
2ms

)
µΣ+ − µΣ− =

8

9

e~
2mu

+
4

9

e~
2md

µp − µn =
10

9

e~
2mu

+
5

9

e~
2md

µΣ+ − µΣ− =
4

5

(
µp − µn

)
Problem 18

ρ0 meson has Jp = 1− and mρ = 775 MeV

(a)

u

γ

u
ρ0 π0

γ has Jp = 1− and pions have Jp = 0−. It is possible to conserve parity and angular
momentum using l = 1. The pion has mass 134 MeV so it is also possible to conserve
energy-momentum. The process is allowed.

(b)

u

g

d

u

d

π−

ρ0

π+

Charged pions have Jp = 0− and mass 139 MeV. Putting the product in state l = 1 allows
us to conserve angular momentum, parity and energy-momentum. The process is allowed.
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6 QCD AND THE QUARK MODEL 18

(c)

u

g

u

u

u

π0

ρ0

π0
u

g u

u

u

π0

ρ0

π0

This process has the same conditions as the process in part (b) but π0s are spin-0 identical
bosons they cannot be put in spatially antisymmetric l = 1 state and the process is forbidden.

(d)

u e−γ

u e+

ρ0

Electron has only 0.510 MeV rest mass, invariant mass can be conserved. Charge is also
trivially conserved. To conserve initial ρ0 spin angular momentum 1, we need L − S ≤ 1 ≤
L+ S. The parity of the lepton pair is equal to the parity of ρ0

(+1)(−1)(−1)l = (−1)l+1 = −1

So L = 0 or 2 and S = 1 can conserve angular momentum and parity. The decay is allowed.

The three allowed modes, ranked by expected rates from high to low are

mode coupling strength
(b)

√
αs
√
αs

(a) uu: 2
3

√
α or dd: −1

3

√
α

(d) 2
3

√
α
√
α or −1

3

√
α
√
α

If we consider charges of particles as eigenvalues of the charge operator Q, the electromagnetic
coupling strength from QED is

coupling strength = 〈final|Q√α |initial〉 (1)

Consider the decay of mesons ρ0 and ω0. They have roughly the same mass, so propagator
effects can be omitted. They also both have Jp = 1−.

25



6 QCD AND THE QUARK MODEL 19

Set |initial〉 = 1√
2
(uu ∓ dd) for ρ0 and ω0, and |final〉 = 1√

2
(uu − dd) for π0, and let the

matrix elements for decay to π0γ via (a) are respectively

ρ0 → π0γ : M =
1

2

(
2

3

√
α− 1

3

√
α

)
=

1

6

√
α

ω0 → π0γ : M =
1

2

(
2

3

√
α +

1

3

√
α

)
=

3

6

√
α

The matrix elements differ by a factor of 3 so the partial widths differ by a factor of ∼ 10.

To calculate the matrix elements for decay to e+e− via (b), we cannot trivially use eq. (1)
because |initial〉 and |final〉 are entangled. Instead, try to sum up the two possible diagrams

ρ0 → e+e− : M =
1

2

2

3

√
α
√
α︸ ︷︷ ︸

uu

−1

2

(
−1

3

√
α
√
α

)
︸ ︷︷ ︸

dd

=
3

6

√
α
√
α

ω0 → e+e− : M =
1

2

2

3

√
α
√
α︸ ︷︷ ︸

uu

+
1

2

(
−1

3

√
α
√
α

)
︸ ︷︷ ︸

dd

=
1

6

√
α
√
α

so the corresponding partial widths differ by a factor of 32 ∼ 10.

However, this is nonphysical. uu and dd are orthogonal states whose relative phases are
irrelevant.

Problem 19

(a)

Using the Breit-wigner formula for J/ψ resonance in elastic scattering of e+e−, approximate
λ as a constant value near the resonance

σ(E) =
λ2

4π

2J + 1

(2s1 + 1)(2s2 + 1)

Γe+e−Γe+e−

(E − E0)2 + Γ2/4

σ′ =

∫
λ2

4π

2J + 1

(2s1 + 1)(2s2 + 1)

Γe+e−Γe+e−

(E − E0)2 + Γ2/4
dE

σ′ =
λ2

4

2J + 1

(2s1 + 1)(2s2 + 1)

2

Γ
Γ2
e+e−

σ′ =
λ2

2

2× 1 + 1

(2× 1
2

+ 1)(2× 1
2

+ 1)
B2Γ

σ′ =
3

8
λ2B2Γ
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6 QCD AND THE QUARK MODEL 19

(b)

Assuming that at each scan point of mean energy E the beam energy E ′ is described by
probability distribution f(E ′ − E), the expectation E measured area under the resonance
peak will be

E

[∫
σmeas(E) dE

]
=

∫
f(E ′ − E)

∫
σ(E) dE dE ′

=

∫ ∫
f(E ′ − E) dE ′ σ(E) dE

=

∫
σ(E) dE

which is the true area under the peak.

(c)

The differential cross-section is proportional to 1 + cos2 θ. The relative number of particles
in a range of θ is thus∫

dΩ
(
1 + cos2 θ

)
= 2π

∫
dθ sin θ

(
1 + cos2 θ

)
∫

dΩ
(
1 + cos2 θ

)
= −2π

[
cos θ +

cos3 θ

3

]
range∫

|cos θ|<0.6

dΩ
(
1 + cos2 θ

)
= 2π

504

3× 53
= 2π

504

375
= 2π

504

1000× 3/8∫
sphere

dΩ
(
1 + cos2 θ

)
= 2π

8

3

acceptance fraction = 50.4%

(d)

Using the area under (c) to obtain σ′ and compare with the sum over (a,b,c) to get B. We
might get

Γ =
8σ′

3λ2B2

Γ =
8E2

0σ
′

3(2π~c)2B2

Γ = 1.97× 102 keV

Γee = 1.28× 101 keV

Neither coincide with the answers given.
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6 QCD AND THE QUARK MODEL 19

(e)

The leptonic widths Γee of φ and J/ψ are similar, because both particles decay via the same
mechanism of annihilating their quarks and creating electron-positron pair.

The total width Γ of φ is much greater than that of J/ψ because the later cannot decay to
lighter states without complicated unconnected annihilation of charm quarks and creation of
lighter quarks, which, according to Zweig rule, leads to suppressed decay amplitude; whilst
the former can decay to lighter quarks via emitting an imaginary gluon and pair producing
some quarks, with much fewer number of vertices.
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7 WEAK INTERACTIONS

Topic 7 Weak interactions

Problem 20 Tau decay

Factor away the matrix element associated with the τντW
− vertex which is common to all

three processes, In low energy limits p2 � m2
W , the expected ratios of the three partial widths

e−

νe

ντ

W−
τ−

(a) Matrix element ∝ gW
p2−m2

W

µ−

νµ

ντ

W−
τ−

(b) Matrix element ∝ gW
p2−m2

W

d or s

u

ντ

W−
τ−

(c) Matrix element for ud ∝
gW cos θC
p2−m2

W
and for us ∝ gW sin θC

p2−m2
W

,

for each colour

are (
− gW
m2
W

)2

:

(
− gW
m2
W

)2

: 3

(
−gW cos θC

m2
W

)2

+ 3

(
−gW sin θC

m2
W

)2

= 1 : 1 : 3

The actual ratios are
1.02 : 1 : 3.5

The 1.02 might be due to pe > pµ slightly, because me � mµ. 3.5 might be attributable to
higher order strong interactions between quarks.

Assuming both the partial widths of µ− decay and τ− decay to νµ/τe
−νe obey Sargent’s

rule

Γ−>e =
G2
FE

5
0

60π3
=⇒ Γτ→e

Γµ→e
=

(
mτ

mµ

)5

ττ =
1

Γτ→e/B(τ → e)
= B(τ → e)τµ→e

(
mµ

mτ

)5

= 3× 10−13 s

where we have adopted τµ→e = τµ because muon only has enough mass to decay to electron,
not to muon itself plus two neutrinos or to the lightest meson.
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7 WEAK INTERACTIONS 21 Threshold energy

Problem 21 Threshold energy

(a)

u or d

W±

the other quarks of the nucleon

ντ τ+

d or u

(b)

Conserving invariant mass, if the products are at rest in ZMF, and approximate neutrinos
as massless (

Eντ +mp

)2 − p2
ντ = (mn +mτ+)2

m2
ντ + 2Eντmp +m2

p = m2
n + 2mnmτ+ +m2

τ+

2Eντmn = 2mnmτ+ +m2
τ+ +m2

n −m2
p

Eντ = mτ+

(
1 +

mτ+

2mn

)
+
m2
n −m2

p

2mn

= 3.46× 103 MeV

(c)

In lab frame, the momentum of τ+ is

pτ+ =
mτ+

mτ+ +mn

Eντ = 2.26× 103 MeV

from which we get its energy

Eτ+ =
√
p2
τ+ +m2

τ+ = 2.88× 103 MeV

(d)

βτ+ =
pτ+

Eτ+
; γτ+ =

Eτ+

mτ+

lτ+ = βτ+γτ+ττ+ =
pτ+

mτ+
ττ+ = 1.11× 10−4 m
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7 WEAK INTERACTIONS 22 Omega decay

Problem 22 Omega decay

Weak decays of Ω−

d
W−

s

s

s

u

u

Ω−(sss)→ Ξ0(uss)π−(ud)

s
u

s W−

u
u

d

Ξ0(uss)→ Λ0(usd)π0(uu)

d
W−

d

s

u

u

u

Λ0(usd)→ p(uud)π−(ud)

s
s

s Z

d
s

d

Ω−(sss)→ Ξ−(ssd)K0(sd). The process is forbidden because the mass of the Omega baryon
1672 MeV is insufficient for the combined rest masses of Kaon 498 MeV and Xion 1321 MeV.

s s
s u
s d

d

u

u/u

Ω−(sss) → Λ0(usd)π−(ūd). All the bosons are W−. This process is is strongly suppressed
because it consists of 4 vertices compared to the above two-vertex diagrams.
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8 ELECTROWEAK UNIFICATION

Topic 8 Electroweak unification

Problem 23

(a)

Z

e/τ/µ−

e/τ/µ+

Γll̄ ∝ g2
Z

[(
0− (−1) sin2 θW

)2
+

(
−1

2
− (−1) sin2 θW

)2
]

= g2
Z

(
2 sin4 θW +

1

4
− sin2 θW

)

Z

ν

ν̄

Γνν̄ ∝ g2
Z

[(
0− 0 sin2 θW

)2
+

(
1

2
− 0 sin2 θW

)2
]

= g2
Z

1

4

Z

u

ū

Γuū ∝ g2
Z

[(
0− 2

3
sin2 θW

)2

+

(
1

2
− 2

3
sin2 θW

)2
]

= g2
Z

(
8

9
sin4 θW +

1

4
− 2

3
sin2 θW

)

Z

d

d̄

Γdd̄ ∝ g2
Z

[(
0 +

1

3
sin2 θW

)2

+

(
−1

2
+

1

3
sin2 θW

)2
]

= g2
Z

(
2

9
sin4 θW +

1

4
− 1

3
sin2 θW

)
The real Z boson can decay to all three generations of leptons and their neutrinos, as well
as u, c, d, s, b quarks (top quark is too heavy).
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8 ELECTROWEAK UNIFICATION 23

ΓZ =

(
2 sin4 θW +

1

4
− sin2 θW

)
× 3 +

1

4
× 3

+

[(
8

9
sin4 θW +

1

4
− 2

3
sin2 θW

)
× 2 +

(
2

9
sin4 θW +

1

4
− 1

3
sin2 θW

)
× 3

]
× 3

The branching fraction for Z decay to

τ+τ− : B =
2 sin4 θW + 1

4
− sin2 θW

ΓZ/g2
Z

= 0.034

(for each one generation of) νν̄ : B =
1/4

ΓZ/g2
Z

= 0.068

(for each one generation of) uū : B =

(
8
9

sin4 θW + 1
4
− 2

3
sin2 θW

)
× 3

ΓZ/g2
Z

= 0.118

(for each one generation of) dd̄ : B =

(
2
9

sin4 θW + 1
4
− 1

3
sin2 θW

)
× 3

ΓZ/g2
Z

= 0.152

All hadrons : B = Buū × 2 +Bdd̄ × 3 = 0.692

(b)

σ
/

n
b

Ecm / GeV

σ0 = 1.5× 10−37 m2

MZ = 91 GeV

ΓZ = 2.5 GeV
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8 ELECTROWEAK UNIFICATION 24

σ0 =
12π

M2
Z

ΓτΓe
Γ2
Z

=⇒ Γτ =

√
σ0M2

ZΓ2
Z

12π
= 73 MeV

Bτ = 0.029

Considering our rough interpolation, this experimental value of branching factor is well con-
sistent with electroweak theory.

The electrons/positions radiate away their energy via synchrotron radiation which is
energy dependent. As a result, the real cm energies are shifted with respect to their apparent
value, causing asymmetry of the resonance curve.

(c)

Assuming lepton universality, and the Z has enough mass to decay to all three generations
of leptons,

σe→Z→hadrons

σe→Z→µ
=

Γhadrons

Γµ
= 20.7

ΓZ = Γµ × 3 + Γν × 3 +
Γhadrons

Γµ
Γµ = 2.47× 103 eV

Problem 24

Error of the result is dominated by that from the total width.

Γ(W− → e−ν̄e) =
GF√

2

M3
W

6π
= 2.34× 10−1 GeV

Assuming the W− couples equally to quarks and leptons, and that it is only massive enough
to decay to d′ū and s′c̄,

Γ(W− → d′ū) = 3× Γ(W− → e−ν̄e) + 3× Γ(W− → e−ν̄e) = 6Γ(W− → e−ν̄e)

Considering three colour multiplicity for each quark. The total lepton decay width is therefore

Γ(W− → lν̄l)

Γ(W− → e−ν̄e)
= 8.92− 6 = 2.92± 0.2

The number of lepton generations is estimated to be 3.
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8 ELECTROWEAK UNIFICATION 25

Problem 25

(a)

νe νe

e−e−

Z
+

e− νe

e−νe

W±

(b)

e−

ν̄e ν̄e

e−

W−

+

ν̄e ν̄e

e−e−

Z

(c)

νµ νµ

e−e−

Z

(d)

ν̄µ ν̄µ

e−e−

Z
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8 ELECTROWEAK UNIFICATION 26

(e)

d

d d

u u

u

e−νe

W±

Problem 26

(a)

Decays of π0

to γγ :

q

γ

q̄

γ

q/q̄
Γ ∝

(
e

2

3

)2

+

(
e

1

3

)2

+

(
e

2

3

)22

to π−νee
+ :

u d

e+

νe

ū ū

W+

forbidden because π± are heavier than π0

to νν̄ :

q

q̄
ν̄

ν

g
l+

W±
l−

The oppositely moving left-handed neutrino

and right-handed antineutrino give nonzero

total helicity in CM frame =⇒ forbidden

(b)

e+e− pair cannot decay to τ+τ− which is a heavier generation.

The decay ν̄µ + τ− → ν̄µ + τ− has only one possible (lowest order) Feynman diagram
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8 ELECTROWEAK UNIFICATION 26

τ− τ−

ν̄µν̄µ

Z

The decay p+ ντ → n+ τ+ does not conserve lepton number, so it does not happen. The
close p+ ν̄τ → n+ τ+ is allowed via

u

d d

u u

d

τ+ν̄τ

W±

(c)

d d

b̄ c̄

d̄

u
W+ Γ ∝ g4

W (VbcVud)
2 = g4

W (sin2 θC cos θC)2

d d

b̄ ū

d̄

u
W+ Γ ∝ g4

W (VbuVud)
2 = g4

W (sin3 θC cos θC)2

d d

b̄

c̄

s̄

c

W+

Γ ∝ g4
W (VbcVcs)

2 = g4
W (sin2 θC cos θC)2

The interaction strengths of B0 decay to J/ψK0 and to Dπ+ are the same, while the decay
to π+π− is Cabibbo suppressed significantly.
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8 ELECTROWEAK UNIFICATION 27

(d)

D0 decay to K−π+

ū ū

c s

d̄

u
W+ Γ ∝ g4

W (VscVud)
2 = g4

W (cos θC cos θC)2

D0 decay to π+π−

ū ū

c d

d̄

u
W+ Γ ∝ g4

W (VcdVud)
2 = g4

W (− sin θC cos θC)2

D0 decay to K+π−

ū ū

c d

s̄

u

W+

Γ ∝ g4
W (VcdVus)

2 = g4
W (− sin θC sin θC)2

The reactions are more Cabibbo suppressed down the table.

Problem 27

(a)

Let ν2 and ν2 be normalised to 1.

νµ = ν2 cos θ + ν3 sin θ

ψ(L = 0) = νµ

ψ(t) = exp

(
iHt

~

)
ψ(L = 0)

Pµ(L) =

∣∣∣∣∣∣νµ ·
(

exp

(
iE2L

~c

)
ν2 cos θ + exp

(
iE3L

~c

)
ν3 sin θ

)∣∣∣∣∣∣
2

Pµ(L) =

∣∣∣∣∣exp

(
iE2L

~c

)
cos2 θ + exp

(
iE3L

~c

)
sin2 θ

∣∣∣∣∣
2

Pµ(L) = cos4 θ + sin4 θ + 2 cos2 θ sin2 θ cos

(
(E2 − E3)L

~c

)
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8 ELECTROWEAK UNIFICATION 27

Pµ(L) = cos4 θ + sin4 θ + 2 cos2 θ sin2 θ − 4 cos2 θ sin2 θ sin2

(
(E2 − E3)L

2~c

)
Pµ(L) = 1− sin2(2θ) sin2

(
(E2 − E3)L

2~c

)
Nµ(L) = Nµ(L = 0)

[
1− sin2(2θ) sin2

(
(E2 − E3)L

2~c

)]

(b)

If m2,m3 � p,

E2 − E3 =
√
p2 +m2

2 −
√
p2 +m2

3

E2 − E3 =
m2

2 −m2
3

2p

Nµ(L) ≈ Nµ(L = 0)

1− sin2(2θ) sin2

(
1

4~c
(m2

2 −m2
3)L

p

)
(c)

0 1 2 3 4 5 6

p / GeV

0.0

0.2

0.4

0.6

0.8

1.0

|ν µ
|2

Expected energy spectrum of muon neutrinos

(d)

The threshold energy for creation of τ , from Qu.21, is 3.46 GeV. Above this energy, the
probability for oscillating into τ is ≈ (0.2, 0.4). Some τ leptons could be detected at MINOS.
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Topic 9

Problem 28

(a)

Bookwork

(b)

(c)

(d)

(e)

Scale up to neutron star.

There’s no bound state of just neutron. There’s only one bound state of proton (Hydro-
gen). In the neutron star Gravitational effects come in allow bound state of neutrons.

The binding energy has to be positive.

Problem 29

gε = BAε1/2

N =

∫ εF

0

dε gε =
2

3
BAε

3/2
F

εF =

(
3N

2BA

)2/3

For N = Z = 1
2
A,

εF =

(
3

4B

)2/3

εF =

(
9π

16
√

2

)2/3 ~2

mR2
0

εF = 33.4 MeV

The total kinetic energy is

E =

∫ εF (N)

0

gεε dε+

∫ εF (Z)

0

gεε dε

=

∫ εF (N)

0

BAε3/2 dε+

∫ εF (Z)

0

BAε3/2 dε

40



9 30

=
2

5
BA
[
ε

5/2
F (N) + ε

5/2
F (Z)

]
=

2

5
BA

(
3

2BA

)5/3[
N5/2 + Z5/2

]
=

3

5

(
3

2BA

)2/3[
N5/2 + Z5/2

]

Problem 30

Nuclear potential rounded corners top-hat Saxon potential

Nuclear shell potential

Intensity ∝ F 2 = 0.7

Problem 31

Coulomb term

Problem 32

Problem 33

Magic number

stuff dont agree

sodium is not spherically symmetric
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