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Topic 1 Lorentz dipole oscillator model, Drude model, Sommer-
feld theory, lattices

Problem 1.1 Sapphire

A sapphire crystal doped with titanium absorbs strongly around 500 nm. Calculate the differ-
ence in the refractive index of the doped crystal above and below the mk 500 nm absorption
band, if the density of absorbing atoms is 1 × 1025 m−3. The refractive index of undoped
sapphire is 1.77.

Using the Lorentz oscillator model, assume all the conducting electrons have the same
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THEORY, LATTICES 1.2 Reflectivity of metals

natural frequency ω,

χ(ω) =
ne2

mε0

1

ω2
T − ω2 − iωγ

The imaginary part peaks at

ω = ωT =
2πc

λ

Below the peak where ω � ωT ,

χ−(ω) =
ne2

mε0

1

ω2
T

Above the peak where ω �
√

ne2

mε0
,

χ+(ω) = 0

so that

∆ε = ∆χ(ω) =
ne2

mε0

1

ω2
T

and use

n =
√
ε

if ∆ε� ε =⇒ ∆n ≈ 1

2
√
ε
∆ε

∆n ≈ 1

2n∞

n(density)e
2

mε0

1

ω2
T

∆n = 6.3× 10−4

Was the resonance frequency a result of doping?

Problem 1.2 Reflectivity of metals

The phase velocity of light in a conducting medium is c divided by the refractive index N(ω) =
ε1/2(ω). Using Drude model results

ε(ω) = 1− ω2
p

ω2 + iω/τ

where ωp is the plasma frequency and 1/τ � ωp for a good Drude metal.

(a) ω � 1/τ

ε(ω) = 1− ω2
p/ω

ω + i/τ
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1 LORENTZ DIPOLE OSCILLATOR MODEL, DRUDE MODEL, SOMMERFELD
THEORY, LATTICES 1.2 Reflectivity of metals

≈ 1 + i
ω2
p

ω/τ︸︷︷︸
�1

≈ i
ω2
pτ

ω
N(ω) ≈ ε1/2(ω)

≈
√

σ0

2ωε0
(1 + i)

where

σ(ω) =
ε0ω

2
pτ

1− iωτ
N is large and has roughly equal real and imaginary parts.

(b) 1/τ � ω � ωp

ε(ω) = 1− ω2
p

ω2

1

1 + i/ωτ

≈ 1− ω2
p

ω2

1

1 + i/ωτ

≈ 1− ω2
p

ω2
+

i

ωτ

ω2
p

ω2

≈ −ω
2
p

ω2
+

i

ωτ

ω2
p

ω2

N(ω) ≈
(
i+

1

2ωτ

)
ωp
ω

N is (mostly) imaginary and large.

(c) ω > ωp

ε(ω) = 1− ω2
p/ω

ω + i/τ

≈ 1− ω2
p

ω2

N(ω) ≈
√

1− ω2
p

ω2

N is real and < 1.

Consider a light wave with the electric field polarised in the x-direction at normal incidence
from the vacuum on a good Drude metal occupying the region z > 0. In the vacuum, the
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1 LORENTZ DIPOLE OSCILLATOR MODEL, DRUDE MODEL, SOMMERFELD
THEORY, LATTICES 1.2 Reflectivity of metals

incident E1 and reflected E2 waves give rise to a field

Ex = E1 exp

(
+iω(

z

c
− t)

)
+ E2 exp

(
−iω(

z

c
+ t)

)
In the medium, the electric field is

Ex = E0 exp

(
+iω

(
z

c/N(ω)
− t
))

Matching electric field and magnetic field (∝ 1
iω
∇× E = 1

iω
∂Ex
∂z

êy),

E1 + E2 = E0

E1 − E2 = E0N(ω)

Thence

2E2

2E1

=
E0 − E0N

E0 + E0N

R ≡
∣∣∣∣E2

E1

∣∣∣∣2 =

∣∣∣∣1−N1 +N

∣∣∣∣2
Using the Drude results above

R ≈



1− 4 Re(N)

|N |2 ≈ 1− 2
√

2ε0ω
σ0

ω � 1/τ

1− 4 Re(N)

|N |2 ≈ 1− 4ω
2ωτωp

= 1− 2
ωpτ

1/τ � ω � ωp(
1−(1−

ω2p

2ω2
)

1+(1− ω2p

2ω2
)

)2

≈ ω2
p

2ω2

2
1
22

=
ω4
p

16ω4 ω � ωp

1/τ ωp0

1

R

ω
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1 LORENTZ DIPOLE OSCILLATOR MODEL, DRUDE MODEL, SOMMERFELD
THEORY, LATTICES 1.3 Optical properties of solids

Problem 1.3 Optical properties of solids

At optical frequencies

• glass is transparent because it is an insulator with a filled valence band and large band
gap which forbids electron interaction with photon.

• silver is shiny because metals have a typically low skin depth which makes them reflec-
tive.

• graphite is a semiconductor with narrow bandgap, so its electrons are easily excited to
the conduction band by photon absorption, making it absorptive.

• powdered sugar is very transmittal just like glass, but the powder form randomises the
direction of incident light and makes sugar appear white.

Problem 1.4 Static conductivity tensor

In the Drude model, the equation of motion for j in a solid of relaxation time τ is(
∂

∂t
+

1

τ

)
j =

nq

m
F(t)

In the presence of a magnetic field B along the z-axis, the force on charge carrier is

F = q(E + v ×B)

Fi = q
(
Ei + εij3Bzvj

)
Fi = qEi +

1

n
εij3Bzjj

Looking for static solution such that ∂
∂t

= 0 and denote cyclotron frequency ωc = qB/m

1

τ
ji =

nq2

m
Ei +

qBz

m
εij3jj(

δij − ωcτε3ij
)
jj =

nq2τ

m
Ei 1 −ωcτ

+ωcτ 1
1

 j = σ0E

j =
σ0

1 + (ωcτ)2

 1 +ωcτ
−ωcτ 1

1 + (ωcτ)2

E

6



1 LORENTZ DIPOLE OSCILLATOR MODEL, DRUDE MODEL, SOMMERFELD
THEORY, LATTICES 1.5 Density of states of free electrons

where the matrix was inverted block-diagonally and m should be interpreted as effective
mass. In the limit ωcτ � 1, we have

σxy = σyx =
σ0

ωcτ
=

nq2τ/m

(qB/m)τ
=
nq

B

Problem 1.5 Density of states of free electrons

(a)

The total number of occupied states in the Fermi sphere is

N = 2
1

(2π/L)n

∫
|k|≤kF

dnk

where L is the dimension of the box. Fermi energy and Fermi wave vector are related by

εF =
~2k2

F

2m

In 1D, Fermi wavevector is

N =
1

π
L2kF =⇒ n =

N

L
=

2

π
kF =⇒ kF =

π

2
n

In 2D,

N =
2

4π2
L2πk2

F =⇒ n =
N

L2
=

1

2π
k2
F =⇒ kF =

√
2πn

(b)

Density of states in energy are defined by

g(E) ≡ dn

dE

Use the results from (a) to calculate. For 1D, this is

g(E) =
d

dE

(
2

π

√
2mE

~

)

g(E) =

√
2m

~π
√
E

Similarly in 2D

g(E) =
d

dE

(
1

2π

2mE

~2

)
g(E) =

m

π~2

7



1 LORENTZ DIPOLE OSCILLATOR MODEL, DRUDE MODEL, SOMMERFELD
THEORY, LATTICES 1.6 Thomas-Fermi screening

(c)

In 3D, repeat the calculations analogously

N(k) =
2L3

8π3

4πk3

3

n(k) = n(E) =
k3

3π2
=

√
8m3

3π2~3
E3/2

g(E) =

√
8m3

3π2~3

3

2

√
E =

3

2

n

ε
3/2
F

√
E =

3

2

n

εF

√
E

εF

where in the last line n denotes n(kF ) = N
V

.

Problem 1.6 Thomas-Fermi screening

The charge density and potential of the screening cloud of electrons induced by the presence
of a fixed external potential Vext are related by

∇2δV = −δρ
ε0

Assuming the electron number density is uniform in a region, satisfying

n =

∫ Ef

g(E) dE

Upon a small perturbation of Ef , electron number density changes

δn = g(Ef )δEf = −δρ
e

where δEf can be calculated from fixed chemical potential

µ = Ef − eVtot =⇒ δEf = eδVtot = e(Vext + δV )

Taking laplacian on both sides of δn equation

eg(EF )∇2(δV + Vext) = −1

e
∇2δρ

g(Ef )
e2

ε0
δn+ eg(Ef )∇2Vext = ∇2δn

g(Ef )
e2

ε0
δn(q) + q2δn(q) = eq2g(Ef )Vext(q)

δn(q) =
q2

q2 + q2
TF

eg(Ef )Vext

8



1 LORENTZ DIPOLE OSCILLATOR MODEL, DRUDE MODEL, SOMMERFELD
THEORY, LATTICES 1.7 Diatomic molecule

δn(q) =
q2

1 + q2/q2
TF

ε0
e
Vext(q)

where q2
TF ≡

e2g(Ef )

ε0
. In 3D

q2
TF =

e2

ε0

[
2

4πk2
F

2π3

dkf
dEf

mkF
π2~2

]
=
me2kF
π2ε0~2

For Vext = Q
4πε0r

Vext(q) =
Q

4πε0
lim
µ→0

∫
dφ

∫
dr r2

∫
sin θ dθ

e−µr−iqr cos θ

r

Vext(q) =
Q

4πε0
lim
µ→0

2π

∫
dr r2 e

−µr(eiqr − e−iqr)
iqr2

Vext(q) =
Q

4πε0
lim
µ→0

4π

∫ ∞
0

dr
e−µr sin(qr)

q
=
Q

ε0
lim
u→0

1

µ2 + q2

nind(q) =
ε0
e

q2

1 + q2/q2
TF

Vext(q)

nind(q) =
Qq2

TF

e

1

q2
TF + q2

nind =
q2
TF

4π

Q

e

exp(−qTF r)
r

Where in the last line we have simply used the result from the forward FT but set 1
ξ

= µ =
qTF .

Problem 1.7 Diatomic molecule

We restrict the basis of states to just the ground state of each atom in isolation, whereas
of course an accurate solution would require a complete set of states that of necessity would
include all the excited states of the atoms. The basis set consists of two states |a〉 and |b〉
that satisfy

Ha |a〉 = Ea |a〉
Hb |b〉 = Eb |b〉

and we look for solutions
|ψ〉 = α |a〉+ β |b〉

Neglecting the direct matrix elements 〈a|b〉 for simplicity (these are easily included if neces-
sary), derive the matrix equation for the wavefunctions and eigenvalues.

9



1 LORENTZ DIPOLE OSCILLATOR MODEL, DRUDE MODEL, SOMMERFELD
THEORY, LATTICES 1.7 Diatomic molecule

Approximating the spatially separate orbitals as being orthogonal, the Hamiltonian eigen-
value equation spanned in the basis stated above is

Ĥ

(
α
β

)
= E

(
α
β

)

The matrix elements are derived from the diatomic Hamiltonian

H = T + Va + Vb

Haa = 〈a| (T + Va + Vb) |a〉 = 〈a|Ea |a〉+ 〈a|Vb |a〉 = Ea + 〈a|Vb |a〉 = Ẽa

Hab = 〈a| (T + Va + Vb) |b〉 = t

0 =

(
Haa − E Hab

Hba Hbb − E

)(
α
β

)

The energy eigenvalues satisfy

0 = ẼaẼb − t2 − E(Ẽa + Ẽb) + E2

E =
1

2

(
Ẽa + Ẽb ±

√
(Ẽa − Ẽb)2 + 4t2

)
The wavefunctions are then
−1

2

(
−Ẽa + Ẽb ±

√
(Ẽa − Ẽb)2 + 4t2

)
t

t −1
2

(
Ẽa − Ẽb ±

√
(Ẽa − Ẽb)2 + 4t2

)

(
α
β

)
= 0

|ψ〉 =

(
α
β

)
= γ

(
2t

±
√

∆E2 + 4t2 −∆E

)

where ∆E = Ẽa − Ẽb.
(a) covalent bonding

In the case of identical atoms Ẽa = Ẽb,

E =
1

2

(
Ẽa + Ẽb ± |2t|

)
|ψ〉 =

1√
2

(
1
∓1

)

The LCAOs have equal contributions from either atom.

10



1 LORENTZ DIPOLE OSCILLATOR MODEL, DRUDE MODEL, SOMMERFELD
THEORY, LATTICES 1.8 BCC and FCC

(b) ionic bonding

In the strong ionic limit ∆E � |t|,

E =
1

2

(
Ẽa + Ẽb ±∆E

)
E+ = max(Ea, Eb); E− = min(Ea, Eb)

|ψ±〉 = |a〉 , |b〉
The energy levels and orbitals remain in their form before hybridisation.

Problem 1.8 BCC and FCC

The lattice sites of a body centred cubic lattice are

Xa[r] + Xa

[
r +

a

2
(i + j + k)

]
where X denotes the 3D Dirac comb (conventionally cyril shah letter). Its fourier transform
is

X 2π
a

(q)

[
1 + exp

(
i
a

2
(qx + qy + qz)

)]
The square bracket term vanishes for any

qx + qy + qz =
2π

a
(2n+ 1) ∀n ∈ Z

This is a description of the FCC of spacing 4π
a

. The properties of FT trivially shows vice
versa.

Problem 1.9 Reciprocal lattice cell volume

The reciprocal lattice vectors {ai}, by definition, satisfy

ai · bj = 2πδij

where {bi} are real lattice vectors. Therefore we can write

(
a1, a2, a3

)(
b1, b2, b3

)
= 2π

1
1

1


det(a1, a2, a3) det(b1, b2, b3) = (2π)3

Ωk = det(a1, a2, a3) = a1 · (a2× a3) =
(2π)3

det(b1, b2, b3)
=

(2π)3

b1 · (b2× b3)
=

(2π)3

Ωr

where Ωk is reciprocal space cell volume and Ωr is real space cell volume.
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1 LORENTZ DIPOLE OSCILLATOR MODEL, DRUDE MODEL, SOMMERFELD
THEORY, LATTICES 1.10 Bragg’s law

Problem 1.10 Bragg’s law

(a)

For all three r = xa1, ya2, za3 on the (hkl) plane,

xh = yk = zl = integer =⇒ r · (hb1 + kb2 + lb3) = 2π × integer

Therefore G is normal to the (hkl) plane.

(b)

Two adjacent (hkl) planes r1 and r2 are related by

r1 ·G = 2π × (integer)

r2 ·G = 2π × (integer± 1)

Their distance is

d =

∣∣(r1 − r2) ·G
∣∣

|G| =
2π

|G|

(c)

The condition
1

2
k ·G =

G2

4

is equivalent to

2k cos

(
π

2
− θ
)

= G

2π

λ
sin(θ) =

G

2
=
π

d

where d is as defined in (b) and π
2
− θ is the angle between the normal of the plane and the

k.

Problem 1.11 Acoustic phonon dispersion in the monatomic chain

un = u0 cos(qrn − ωt)
ün = −ω2u0 cos(qrn − ωt)

K(un+1 + un−1 − 2un) = un
[
cos(qa) + cos(−qa)− 2

]
− u0 sin(qrn − ωt)

[
sin(qa) + sin(−qa)

]
mω2 = 2K

[
1− cos(qa)

]
= 4K sin2

(
qa

2

)
12



1 LORENTZ DIPOLE OSCILLATOR MODEL, DRUDE MODEL, SOMMERFELD
THEORY, LATTICES 1.12 Heat capacity of a metal

Problem 1.12 Heat capacity of a metal

The metal heat capacity consists of electron heat capacity and phonon heat capacity. Electron
obeys Fermi-Dirac statistics. At low temperatures, chemical potential varies weakly with
temperature such that µ ≈ Ef

f(E) =
1

exp
(
E−Ef
kBT

)
+ 1

Using Problem 1.5.(c), we have

U =

∫ ∞
0

g(E)f(E)E dE

U =

∫ ∞
0

3n

2E
3/2
f

f(E)E3/2 dE

UE>Ef =
3nkBT

2

∫ ∞
0

1

eu + 1

(
Ef + ukBT

Ef

)3/2

du

UE>Ef = g(Ef )EfkBT

∫ ∞
0

1

eu + 1

(
1 +

ukBT

Ef

)3/2

du

n =

∫ ∞
0

g(E)f(E) dE

nE>Ef = g(Ef )kBT

∫ ∞
0

1

eu + 1

(
1 +

ukBT

Ef

)1/2

du

Let’s assume Ef only varies weakly with T , such that U can be spanned like

UE>Ef = EfnE>Ef + g(Ef )k
2
BT

2

∫ ∞
0

u

eu + 1
du+O(T 3)

Similarly (in a way that is more or less equally hand wavy as taking g(E) = g(Ef ) in the
notes)

UE<Ef = EfnE<Ef + g(Ef )k
2
BT

2

∫ ∞
0

u

eu + 1
du+O(T 3)

CV ≈ 4g(Ef )k
2
BT

∫ ∞
0

u

eu + 1
du

where the total number density is conserved.

Phonons obey Bose-Einstein statistics with zero chemical potential. At low temperatures
there are only NA acoustic modes per mole because optical modes are forbidden by band

13



1 LORENTZ DIPOLE OSCILLATOR MODEL, DRUDE MODEL, SOMMERFELD
THEORY, LATTICES 1.12 Heat capacity of a metal

gap.

NA =

∫ ωD

0

D(ω) dω

The density of states D(k) is proportional to 4πk2 and hence

D(ω) ∝ k2 dk

dω
=
ω2

v3
=⇒ ω3

D ∝ v3NA

Integrating this with the distribution and energy per mode ~ω

U =

∫ ωD

0

D(ω)~ω
exp
(
~ω/kBT

)
− 1

dω

U ∝
∫ ωD

0

~ω3/v3

exp
(
~ω/kBT

)
− 1

dω

U ∝ k4
BT

4

~3v3

∫ θD/T

0

u2

eu − 1
du

U ∝ kBT
4

θ3
D

NA

∫ θD/T

0

u2

eu − 1
du

At low temperatures θD � T the integral on the right may be approximated as constant
with T . Therefore

CV =
∂U

∂T
∝ kBθ

−3
D NAT

3

The two components together yield

C = γT + βT 3

14



2 BAND STRUCTURE

Topic 2 Band structure

Problem 2.1

Brillouin zone

Unperturbed 
dispersionperturbed by periodic 

potential

k

Fold back

E

by periodic potential

Reciprocal lattice vector

k

Minimum energy absorption process

In the first Brillouin zone of a body centred cubic (BCC) crystal, the shortest distance from
the zone centre to the zone boundary is

√
2π/a. In every BCC unit cell, there are two atoms

each with one valence electron. Taking into account spin, the radius of the Fermi sphere of
a monovalent metal satisfies

2 · 4π

3
k3
F = 2 ·

(
2π

a

)3

=⇒ kF =

(
6

π

)1/3
π

a

Using 6
π
< 2 < 23/2 =⇒

(
6
π

)1/3
<
√

2, we get that the Fermi sphere is entirely contained
within the first Brillouin zone.

The minimum energy E0 required for a photon absorption process is approximately

E0 ≈ E

(
2
√

2π

a
− kF

)
− E(kF )

≈

(2
√

2−
(

6

π

)1/3
)(

π

6

)1/3
2

Ef − EF

≈ 0.638 Ef

15



2 BAND STRUCTURE 2.2

Alkali metals have a BCC structure. The lattice constants a of Na, K, Rb are in increasing
order. The broad peaks arising from interband optical absorption are observed at increasing
frequencies with higher peaks higher up the periodic table.

Down the table, increasing lattice constants mean lower kF =⇒ lower Ef =⇒ lower
E0. Qualitatively, this is consistent with features of observed data.

Problem 2.2

Near the zone boundary, the energy perturbation is dominated by nearly degenerate contri-
butions. In the nearly degenerate subspace,

H |ψ〉 = (T + V ) |ψ〉 = E |ψ〉
~2

2m

(
k2 (

k − 2π/a
)2

)
|ψ〉+

(
〈k|U |k〉 〈k|U

∣∣k − 2π/a
〉〈

k − 2π/a
∣∣U |k〉 〈k − 2π/a

∣∣U ∣∣k − 2π/a
〉) |ψ〉 = E |ψ〉∣∣∣∣∣~

2k2

2m
+ U0 − E U2π/a

U∗2π/a
~2(k−2π/a)2

2m
+ U0 − E

∣∣∣∣∣ = 0

Setting U0 = 0 because the physics is invariant under constant shift of potential,

E± =
1

2

~2

2m

[
k2 +

(
k − 2π

a

)2
]
±

1

2

√√√√( ~2

2m

)2
[
k2 +

(
k − 2π

a

)2
]2

− 4

(
~2

2m

)2

k2

(
k − 2π

a

)2

+ 4
∣∣U2π/a

∣∣2

E± =
1

2

~2

2m

[
k2 +

(
k − 2π

a

)2
]
± 1

2

√√√√( ~2

2m

)2
[
k2 −

(
k − 2π

a

)2
]2

+ 4
∣∣U2π/a

∣∣2
(a)

On the zone boundary k = π/a, there is a gap

E± =
~2k2

2m
± 1

2

√
4
∣∣U2π/a

∣∣2
∆E = E+ − E− = 2

∣∣U2π/a

∣∣
(b)

On the zone boundary, the eigenstates of the energy equation satisfy(
~2k2
2m

U2π/a

U∗2π/a
~2k2
2m

)(
c±k

c±
k− 2π

a

)
=

(
~2k2

2m
±
∣∣U2π/a

∣∣)( c±k
c±
k− 2π

a

)

16



2 BAND STRUCTURE 2.2

c±k
c±
k− 2π

a

= ± U2π/a∣∣U2π/a

∣∣
The probability density for the electronic states at k = π

a
takes the form〈

ψ+
∣∣r〉 ∝ U2π/a

1/2 exp

(
i
πx

a

)
+ U∗2π/a

1/2 exp

(
−iπx

a

)
∝ cos

(
πx

a
+
φ

2

)
∣∣∣ψ(1)(r)

∣∣∣2 =
∣∣∣〈ψ+

∣∣r〉∣∣∣2 ∝ cos2

(
πx

a
+
φ

2

)
〈
ψ−
∣∣r〉 ∝ U2π/a

1/2 exp

(
i
πx

a

)
− U∗2π/a1/2 exp

(
−iπx

a

)
∝ sin

(
πx

a
+
φ

2

)
∣∣∣ψ(2)(r)

∣∣∣2 =
∣∣∣〈ψ−∣∣r〉∣∣∣2 ∝ sin2

(
πx

a
+
φ

2

)
where we set arg(U2π/a) = φ.

Now consider diatomic lattice

U(g) =
1

L

∫ L/2

L/2

e−igx

[
UA

(
−a

4
(1− δ) + x

)
+ UB

(
+
a

4
(1− δ) + x

)]

L→∞ U(g) = UA(g) exp

(
−iga(1− δ)

4

)
+ UB(g) exp

(
iga(1− δ)

4

)
U2π/a = UA

2π/a exp

(
−i2π(1− δ)

4

)
+ UB

2π/a exp

(
i2π(1− δ)

4

)
U2π/a = −iUA

2π/a exp

(
iπδ

2

)
+ iUB

2π/a exp

(
−iπδ

2

)
U2π/a =

(
UA

2π/a + UB
2π/a

)
sin

(
πδ

2

)
− i
(
UA

2π/a − UB
2π/a

)
cos

(
πδ

2

)
UA and UB can both be assumed to be even in position space, so they are both real after FT.

(a) identical atoms

This effectively halves the lattice constant a → a
2
. As a result, the first Brillouin zone

boundary is at π
a/2

= 2π
a

. The gap there is

∆E = 2
∣∣U4π/a

∣∣
φ = 0 in this case. The electron charge densities take the form∣∣∣ψ(1)(r)

∣∣∣2 ∝ cos2

(
πx

a

)
∣∣∣ψ(2)(r)

∣∣∣2 ∝ sin2

(
πx

a

)
17



2 BAND STRUCTURE 2.3 NFE approximation for a square lattice

(b) δ = 0

The form of the potential is changed but the zone boundary is still π
a

which means the energy
gap is given by

U2π/a = −i
(
UA

2π/a − UB
2π/a

)
∆E = 2

∣∣∣UA
2π/a − UB

2π/a

∣∣∣
Depending on which of A or B is more attractive, φ = ∓π

2∣∣∣ψ(1)(r)
∣∣∣2 ∝ cos2

(
π(x∓ a/4)

a

)
∣∣∣ψ(2)(r)

∣∣∣2 ∝ cos2

(
π(x± a/4)

a

)
The bands are shifted towards opposite directions by π

4
. Both are periodic over a. Comparing

with Rn of a and b, we see the gap is small and the charge densities are centered on top of
the atoms, which are ionic features.

(c) UA = UB

U2π/a =
(
UA

2π/a + UB
2π/a

)
sin

(
πδ

2

)
The potential is real at the boundary φ = 0 and the bandgap is large.∣∣∣ψ(1)(r)

∣∣∣2 ∝ cos2

(
πx

a

)
∣∣∣ψ(2)(r)

∣∣∣2 ∝ sin2

(
πx

a

)
The first band resembles a “bonding” state and the second an “antibonding” state of covalent
lattices.

Problem 2.3 NFE approximation for a square lattice

(a)

In the nearly free electron approximation, each wavefunction labeled by k is a superposition
of all the states that could be labeled by k, that is, the free electron states related to k by
any reciprocal lattice vector.

|ψk〉 =
∑
G

ck−G |k−G〉

Consider only degenerate states which dominate the energy perturbation.

18



2 BAND STRUCTURE 2.3 NFE approximation for a square lattice

The reciprocal lattice vectors of the 2D square crystal of side a are

b1 =
2π

a
(1, 0) b2 =

2π

a
(0, 1)

At k0 = 2π
a

(0, 0) = 0, there is no G 6= 0 that has the same energy as |0〉.
|ψk0〉 = |0〉

At k1 = 2π
a

(
1
2
, 0
)
,

E
(0)
k1−b1

= E
(0)
k1

so

|ψk1〉 = ck1

∣∣∣∣12b1

〉
+ ck1−b1

∣∣∣∣−1

2
b1

〉
At k2 = 2π

a

(
1
2
, 1

2

)
,

E
(0)
k1−b1

= E
(0)
k1−b2

= E
(0)
k1−b1−b2

= E
(0)
k1

where b2 = 2π
a

(0, 1). so

|ψk2〉 = ck2

∣∣∣∣12b1 +
1

2
b2

〉
+ ck2−b1

∣∣∣∣−1

2
b1 +

1

2
b2

〉
+

ck2−b2

∣∣∣∣12b1 −
1

2
b2

〉
+ ck2−b1−b2

∣∣∣∣−1

2
b1 −

1

2
b2

〉
(b)

Given

V (x, y) = −2V0

[
cos

(
2πx

a

)
+ cos

(
2πy

a

)]
Ṽ (kx, ky) = −V0

[
δ(kx − b)δ

(
ky
)

+ δ(kx + b)δ
(
ky
)

+ δ
(
ky − b

)
δ(kx) + δ

(
ky + b

)
δ(kx)

]
where b = |b1| = |b2|. The shifts of delta functions indicate the difference k1 − k2 for the
matrix element Vk1,k2 to be nonzero.

The energy eigenstate equation, in the subspace spanned by the seven states in (a) are

H |ψ〉 = (T + V ) |ψ〉 = E |ψ〉

~2b2

2m



0
1
4
−t

−t 1
4

1
2
−t −t

−t 1
2

−t
−t 1

2
−t

−t −t 1
2


|ψ〉 = E |ψ〉
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2 BAND STRUCTURE 2.4 Tight binding for BCC and FCC lattices

where

t =
2mV0

~2b2

The block-diagonal equation can be solved in subspaces independently. Let E = ~2b2
2m
e.

k0 subspace: e = 0

k1 subspace:

(
1

4
− e
)2

− t2 = 0 =⇒ e =
1

4
± t

k2 subspace:

[(
1

2
− e
)2

− 4t2

](
1

2
− e
)2

= 0 =⇒ e =
1

2
or

1

2
± 2t

So the energy eigenvalues are

k0 subspace: E = 0

k1 subspace: E =
1

4

~2b2

2m
± V0

k2 subspace: E =
1

2

~2

2m
or

1

2

~2b2

2m
± 2V0

Problem 2.4 Tight binding for BCC and FCC lattices

Use

E = 〈0| Ĥ |ψ〉 =
∑
n

eik·Rn 〈0| Ĥ |n〉

and take into account

(a) 8 nearest neighbours in BCC

E = 〈0| Ĥ |0〉︸ ︷︷ ︸
ε0

+
∑

8 neighbours

eik·Rn 〈0| Ĥ |n〉︸ ︷︷ ︸
t

E = ε0 + t
∑

l,m,n=±1

e
i
2

(lkxa+mkya+nkza)

E = ε0 + t
∑
l=±1

e
i
2

(lkxa)
∑
m=±1

e
i
2

(mkya)
∑
n=±1

e
i
2

(nkza)

E = ε0 + t
(
eiakx/2 + e−iakx/2

)(
eiaky/2 + e−iaky/2

)(
eiakz/2 + e−iakz/2

)
E = ε0 + 8t cos

(
akx
2

)
cos

(
aky
2

)
cos

(
akz
2

)
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2 BAND STRUCTURE 2.5

(b) 12 nearest neighbours in FCC

E = ε0 + t
∑

l,m=±1

e
i
2

(lkxa+mkya) + t
∑

l,m=±1

e
i
2

(lkya+mkza) + t
∑

l,m=±1

e
i
2

(lkza+mkxa)

E = ε0 + 4t

[
cos

(
akx
2

)
cos

(
aky
2

)
+ cos

(
aky
2

)
cos

(
akz
2

)
+ cos

(
aky
2

)
cos

(
akx
2

)]

Problem 2.5

Consider a two-dimensional band structure on a rectangular lattice

E(k) = 2t1 cos(akx) + 2t2 cos
(
bky
)

(a)

The energy is periodic over in k-space over kx → kx + 2π
a

and ky → ky + 2π
b

independently, so
the reciprocal lattice is rectangular of dimensions 2π

a
, 2π
b

.

(b)

Correspondingly the real space lattice is also rectangular of dimensions a, b.

(c)

If t1 < t2 < 0 and a < b, we can plot some contours of constant energy.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

kx/(2π/a)

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

k
y
/(

2
π
/b

)

constant energy contours

−4

−2

0

2

4

E
n

er
gy

From the graph, maxima are found at (kx, ky) = (±π(2n+1)
a

,±π(2m+1)
b

), for n,m ∈ Z. Minima

are found at (kx, ky) = (±π2n
a
,±π2m

b
). Saddle points are at (kx, ky) = (±π2n

a
,±π(2m+1)

b
) or
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2 BAND STRUCTURE 2.5

(kx, ky) = (±π(2n+1)
a

,±π2m
b

). Electron effective masses are given by

~2

mij

= ∂ki∂kjE(k)

~2

mij

= ∂2
ki
E(k)δij

m∗2 = det
(
mij

)
m∗ =


maxima − ~2

2ab
√
t1t2

minima + ~2
2ab
√
t1t2

saddle points ~2
2ab
√
−t1t2

=⇒ undefined

(d)

Some contours with −1 < E < 1 are open. The energy of saddle points lie in this range.

(e)

The contours of constant energy

Near the extrema,
−|E − Eext| ≈ t1a

2k2
x + t2b

2k2
y

We can parametrise the constant energy contours by

kx =

√
−|E − Eext|

t1a2
cos(α)

ky =

√
−|E − Eext|

t2b2
sin(α)

In two dimensions, the density of states near the extrema can be found by integrating over
the ellipse

g(E) =

∫
2 · δ(E − E(k))

(2π)2
dk

g(E) =

∫
dC

2π2

1∣∣∇⊥E(k)
∣∣

g(E) ≈
∫ 2π

0

dα

2π2

√
k2
y
t2b2

t1a2
+ k2

x
t1a2

t2b2

2t21a
4k2
x + 2t22b

4k2
y

g(E) ≈ 1

π

1√
2t1a2t2b2

=

√
2

π~2
|m∗|
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2 BAND STRUCTURE 2.6

Problem 2.6

(a)

Construct Bloch states ∣∣ψp〉 =
∑
n

eik·Rn |pn〉

Consider 3 nearest neighbours∣∣ψp〉 = |p0〉+
[
ei(kxa/2+kya

√
3/2) ∣∣p′1〉+ ei(−kxa/2+kya

√
3/2) ∣∣p′2〉+

∣∣p′3〉]∣∣ψp〉 = |p0〉+
[
ei(kxa/2+kya

√
3/2) ∣∣p′1〉+ ei(−kxa/2+kya

√
3/2) ∣∣p′2〉+

∣∣p′3〉]∣∣∣ψ′p〉 =
∣∣p′0〉+

[
ei(kxa/2−kya

√
3/2) ∣∣p′1〉+ ei(−kxa/2−kya

√
3/2) ∣∣p′2〉+

∣∣p′3〉]
where the subscripts label the 3 nearest neighbours. Do some algebra

〈p0| Ĥ
∣∣ψp〉 = Ep〈

p′0
∣∣ Ĥ ∣∣ψp〉 =

[
ei(kxa/2+kya

√
3/2) + ei(−kxa/2+kya

√
3/2) + 1

]
t〈

p′0
∣∣ Ĥ ∣∣∣ψ′p〉 = Ep

〈p0| Ĥ
∣∣∣ψ′p〉 =

[
ei(kxa/2−kya

√
3/2) + ei(−kxa/2−kya

√
3/2) + 1

]
t∗

where
t =

〈
p′0
∣∣ Ĥ ∣∣p′i〉 =

[
〈p0| Ĥ |pi〉

]∗
= t∗ ∀i ∈ 1, 2, 3

The eigenenergy satisfies determinant equation∣∣∣∣∣Ep − E tF (k)
tF ∗(k) Ep − E

∣∣∣∣∣ = 0

(b)

The reciprocal lattice vectors b1 and b2 are perpendicular to t2 and t1 respectively, and their
inner products with t1 and t2 direction are 2π.

b1 =
2π

a
√

3

(√
3

1

)

b2 =
2π

a
√

3

(
−
√

3
1

)
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2 BAND STRUCTURE 2.6

The lattice can be constructed from these two vectors. The first Brillouin zone is the enclosed
by the perpendicular bisectors of the vectors from Γ = (000) to the six nearest neighbours, a
hexagon with one corner at

P =
2π

a
√

3

2√
3
x̂ =

4π

3a
x̂

(c)

∣∣∣∣∣Ep − E tF (k)
tF ∗(k) Ep − E

∣∣∣∣∣ = 0

E = Ep ± t
∣∣F (k)

∣∣
Along zone corner and zone face directions,

FP (k) = 1 + 2 cos

(
ka

2

)
FQ(k) = 1 + 2 cos

(√
3ka

4

)
exp

(
−i
√

3ka

4

)

(d)

A single layer of graphite will have a full lower band and an empty upper band which are
touching, making it a semimetal.
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2 BAND STRUCTURE 2.7

(e)

Carbon nanotubes impose the periodic condition,

k · (mt1 + nt2) = 2πl

the allowed ks have constrained components perpendicular to the tube which must be in-
teger multiples of 2π

|mt1+nt2| . Their components parallel to the tube are are constrained.
Consequently, the loci of allowed k states are lines parallel to the tube.

Problem 2.7

(a)

∣∣s(k)
〉

=
∑
n

eikRn
∣∣∣s(n)

〉
∣∣d(k)

〉
=
∑
n

eikRn
∣∣∣n(d)

〉

(b)

Approximate |s〉 and |d〉 as an orthogonal basis, and consider only nearest neighbour inter-
actions

Hss =
∑
n∈0,±1

eikRn
〈
s(0)
∣∣∣ Ĥ ∣∣∣s(n)

〉
Hss =

〈
s(0)
∣∣∣ Ĥ ∣∣∣s(0)

〉
︸ ︷︷ ︸

Ess

−
(
ts0s1e

ika + ts0s−1e
−ika

)

where tminj = −
〈
m(i)

∣∣∣ Ĥ ∣∣∣n(j)
〉

. Exploiting the invariance of Ĥ under both parity and

translation by a, ts0s1 and ts0s−1 can both be written as tss

Hss = Ess − 2tss cos(ka)

Analogously,

Hdd = Edd − 2tdd cos(ka)

H∗ds = Hsd =
〈
s(0)
∣∣∣ Ĥ ∣∣∣d(0)

〉
︸ ︷︷ ︸

≈0

−tsd
(
eika + e−ika

)
Hds = Hsd = −2tsd cos(ka)
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2 BAND STRUCTURE 2.7

where in the off-diagonal case we cannot use parity transform to equate two different matrix
elements, but the local orbitals can always be chosen such that the matrix elements are real.

H |ψ〉 = E(k) |ψ〉∣∣∣∣∣Es − 2tss cos(ka)− E(k) −2tsd cos(ka)
−2tsd cos(ka) Ed − 2tdd cos(ka)− E(k)

∣∣∣∣∣ = 0

(c)

tss is expected to be the strongest interaction because s orbitals are found more often than
d orbitals where the Hamiltonian is strong..

(d)

When tss and tdd are negligible and |Edd − Ess| � 1

E2(k)− (Edd + Ess)E(k) + EddEss − 4|tsd|2 cos2(ka) = 0

E(k) =
1

2
(Edd + Ess)±

1

2

√
(Edd − Ess)2 + 16|tsd|2 cos2(ka)

E(k) =
1

2
(Edd + Ess)± 2|tsd| cos(ka)

(e)

The inclusion of small hopping terms creates band gaps at k = 0.

(f)

This model somewhat describes Cu.
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3

Topic 3

Problem 3.1

Read off 1
∆(1/B)

= 1.8× 104 T from the figure,

∆

(
1

B

)
=

2πe

~Ak

Ak =
2πe

~
1

∆(1/B)
= 1.72× 1020 m−2

kF =

√
Ak
π

= 7.40× 109 m−1

Four electrons per Ru are distributed equally across the three bands, so the Fermi surface γ
encloses 4

3
electrons per lattice site.

4

3
=

∫
cylinder of radius kF

2×
(
a

2π

)2

dk = 2πk2
F

(
a

2π

)2

=⇒ a =

√
8π

3

1

kF
= 3.91× 10−10 m

O
x

y

The Brillouin zone, and the three Fermi surfaces A, B, and γ all centered at the origin.
The blue sheet is A which has dimensions 2

3
2π
a
× 2π

a
, while the red sheet B is the opposite.

The circle is γ which has characteristic dimension kF .

A
(α)
k =

2πe

~
1

∆(1/B)
= 2.86× 1019 m−2 ≈ 0.11

(
2π

a

)2

A
(β)
k =

2πe

~
1

∆(1/B)
= 1.24× 1020 m−2 ≈ 0.48

(
2π

a

)2
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3 3.2

The total area occupied by filled electron states in α and β would be equal to that in A and

B, 2× 2
3

(
2π
a

)2 ≈
[
0.48 + (1− 0.11)

](
2π
a

)2
, which implies α is an hole band and β a electron

band.

Problem 3.2

N = 2
1

(2π/L)3

4π

3
k3
F

k3
F = 3π2N

V
= 3π2ρNA

M

Ak = πk2
F = π

(
3π2ρNA

M

)2/3

∆

(
1

B

)
=

2πe

~
1

Ak
= 5.5× 10−5 T−1

for B = 1 T,

Ar = Ak

(
~
eB

)2

= 7.46× 10−11 m2

Problem 3.3

E± =
1

2

~2

2m

[
k2 +

(
k − 2π

a

)2
]
± 1

2

√√√√( ~2

2m

)2
[
k2 −

(
k − 2π

a

)2
]2

+ 4|U0|2

E± =
1

2

~2

2m

[
2k2 − 4π

a
k +

4π2

a2

]
± 1

2

√(
~2

2m

)2[
4π

a
k − 4π2

a2

]2

+ 4|U0|2

d2E±

dk2

∣∣∣∣∣
k=π

a

=
~2

m
±

4

(
~2

m

)2(
π

a
k − π2

a2

)2

+ 4|U0|2
− 1

2(
~2

m

)2
2π2

a2

d2E±

dk2

∣∣∣∣∣
k=π

a

=
~2

m
± 1

2|U0|

(
~2

m

)2
2π2

a2

1

m∗
=

1

m
+

~2π2

m2|U0|a2
≈ 1

m

4E0

Egap

m∗

m
≈ Egap

4E0

=⇒ m∗ ∼ Egap

From the given data
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3 3.4

Crystal m∗

Egap
∼

InSb 6.5× 10−2

InAs 6.0× 10−2

InAs 5.1× 10−2

They are roughly the same orders of magnitude.

Problem 3.4

Z = 1 + exp
[
−β(ε− µ)

]
fe(ε) = 〈Ne〉 =

1

β

(
∂ lnZ

∂µ

)
T,V

=
1

eβ(ε−µ) + 1

fh(ε) = 〈Nh〉 = 〈Ne +Nh〉 − 〈Ne〉 = 〈1〉 − 〈Ne〉 = 1− fe(ε)

fh(ε) =
eβ(ε−µ)

eβ(ε−µ) + 1
=

1

eβ(µ−ε) + 1

Problem 3.5

Drift velocity is the average velocity of charge carriers in the material which describes net
movement and ignores individual thermal movements. Electron mobility eτ/m is a measure
of relaxation time in the material. Effective mass is the mass which in vacuum would have
lead to second derivative of dispersion curve equal to that of the bare mass in the external
potential.

Assuming that the donors and acceptors are fully ionised at 300 K, i.e. kBT � ∆. The
intrinsic carrier density is small compared to the dopants density, so we are in the extrinsic
regime

n = Nd −Na = 2× 1022 m−3

and the law of mass action gives

np = n2
in =⇒ p =

n2
in

n
= 2.88× 1016 m−3

At low frequency

σ0 =
nall carrierse

2τ

m
so we expect

• at low temperature, neither intrinsic nor extrinsic carriers are activated.
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3 3.6

• at higher temperature in the extrinsic regime, the extrinsic carriers are activated and
saturate to a level of n, while τ the relaxation time shortens with temperature rise.

• in the intrinsic regime more and more intrinsic carriers are activated.

0 T

σ

extrinsic carriers acivated

τ decreases

intrinsic carriers activated

Problem 3.6

Energy of hydrogenic donor orbit:

m∗c
me

1

ε2
× 13.6 eV = 0.630 meV

For donor orbits to overlap with each other significantly, their wavefunctions have to be closer
in real space, that is when the “radius” of their orbit is similar to the inter-impurity distance

r0 =
4πεε0~2

m∗e2
= ε

me

m∗
aBohr = 6.35× 10−8 m &

(
1

Nd

) 1
3

=⇒ Nd & 4× 1021 m−3.
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4

Topic 4

Problem 4.1

At the edge of the depletion region x = xb, φ = φb and ∇φb = 0.

∇2φ = −Nde

εε0

φ = φb −
Nde

2εε0
(x− xb)2

The depletion width is then given by√√√√ φb(
Nde
2εε0

) = 2.58× 10−7 m

Problem 4.2

(a)

Assuming infinite potential well, the electron waves are bound in the z direction and free in
the x and y directions

En(k) =
~2

2m

[(
πn

L

)2

+ k2
x + k2

y

]
n ∈ Z+

(b)

The second lowest sub-band starts being filled at energy

E2(0) =
~2

2m

π2

L2
22 = E1(k2

max) =⇒ k2
max =

π2

L2

(
22 − 12

)
The number of states per area filled up to kmax is

σ =

∫
gk dk

σ =
2

(2π)2
πk2

max

σ =
3π

2L2
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4 4.2

(c)

For a well of finite depth, the energy of the highest bound state does not exceed V0, if En for
infinite well still holds (roughly)

~2

2m

π2

L2
N2 ≈ V0

N ≈ L

π~
√

2mV0

(d)

Bound solutions of finite potential well are either odd or even.

ψodd(x) =


sin
(√

2mE
~ x

)
|x| < L

2

sin
(√

2mE
~

L
2

)
exp

(
−
√

2m(V0−E)

~

(
|x| − L

2

))
|x| > L

2

ψeven(x) =


cos
(√

2mE
~ x

)
|x| < L

2

cos
(√

2mE
~

L
2

)
exp

(
−
√

2m(V0−E)

~

(
|x| − L

2

))
|x| > L

2

Matching the wavefunction and its first derivative at |x| = L
2
, we get two forms which the

solutions might take

tan

(√
2mE

~
L

2

)
=


√

V0−E
E

−
√

E
V0−E

For real solutions of 0 < E < V0,
√

V0−E
E

ranges from +∞ to 0, intersecting the tangent

above the x-axis between nπ +
[
0, π

2

]
. That is exactly

ceil

[√
2mV0

~
L

2

/
π

]

times. −
√

E
V0−E ranges from 0 to −∞, intersecting the tangent below the x-axis (ignore

E = 0 solution). The curves meet somewhere in nπ +
[
π
2
, π
]

ceil

(√2mV0

~
L

2
− π

2

)/
π


Add both up, the number of bound solutions is

ceil

[√
2mV0

~π
L

2

]
+ ceil

[√
2mV0

~π
L

2
− 1

2

]
= 1 + floor

[√
2mV0

~
L

π

]
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4 4.3

Problem 4.3

Sorry I did not finish brief notes questions on time.

Problem 4.4

Use the NFE model,

H =

(
E0(1 + 2κ) U

U E0(1− 2κ)

)
[
E0(1 + κ2)− E

]2 − E04κ2 = U2E = E0

1±
√
U2

E2
0

+ 4κ2


The 1D density of states in κ is

gκ =
2

2π/L

dk

dκ
=

2

2π/L

π

a
=
L

a
= N

The change in electronic energy is

Eelec =
1

N

∫ 0

1

dκ gκ

(√
U2 + 4κ2E2

0 − 2κE0

)

Eelec = |U |
∫ 1

0

dκ

2κE0

|U | −
√

1 +

(
2κE0

U

)2


Eelec = |U |
∫ 1

0

dx

x

α
−
√

1 +

(
x

α

)2


where x = κ, α = |U |
2E0

. In the limit α� 1, sinh−1(1/α) = ln
(
2/α

)
Eelec = |U |

∫ 1

0

dx

x

α
−
√

1 +

(
x

α

)2


= |U |
[

1

2α
− α

∫ sinh−1(1/α)

0

cosh2 u du

]

= |U |

 1

2α
− α

4

∫ ln(2/α)

0

e2u + e−2u + 2 du
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4 4.5

=
1

2
|U |α lnα

=
~2π2

2ma2
α2 lnα

Problem 4.5

Singlet(triplet) state:

|ψ〉 =
1√
2

(
|ab〉 ± |ba〉

)
ρ(r) =

∣∣∣〈ψ| (|r〉 ⊗ I)∣∣∣2 +
∣∣∣〈ψ| (I ⊗ |r〉)∣∣∣2

ρ(r) =
1

2

∣∣ψa(r) |b〉 ± ψb(r) |a〉∣∣2 +
1

2

∣∣|a〉ψb(r)± |b〉ψa(r)∣∣2
ρ(r) = ψ2

a(r) + ψ2
b (r)± 2ψa(r)ψb(r) 〈a|b〉

However |ψ〉 is not normalised. If it were, the singlet state would have lower charge density
in the middle.

The singlet state has more charge density in the middle where Coulomb interaction is
strong.

Problem 4.6

M = − 1

V

∂F

∂H

Z =
J∑

Jz=−J

exp(−βgLµBHJz)

F = − 1

β
lnZ

∂Z

∂H
= −βgLµB

J∑
Jz=−J

Jz exp(−βgLµBHJz)

∂2Z

∂H2
= (βgLµB)2

J∑
Jz=−J

J2
z exp(−βgLµBHJz)

M =
1

V Zβ

∂Z

∂H
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4 4.7

χ =
∂M

∂H
=

1

V Zβ

[
− 1

Z

(
∂Z

∂H

)2

+
∂2Z

∂H2

]

At zero field |βgLµBHJ | � 1,

Z =
J∑

Jz=−J

1 = 2J + 1

∂Z

∂H
= −βgLµB

J∑
Jz=−J

Jz = 0

∂2Z

∂H2
= (βgLµB)2 1

3
J(J + 1)(2J + 1)

χ =
(βgLµB)2

3V β
J(J + 1)

Problem 4.7

I understood these concepts really poorly.

Problem 4.8 Band magnets

(a) Stoner’s expression

χ = µ0
µ2
Bg(EF )

1− Ug(EF )
2

= χPauli

(
1− Ug(EF )

2

)−1

U =
2

g(EF )

(
1− χP

χ

)
We have reason to speculate the enhancements are due to Coulomb repulsion of these metals.

(b)

Stoner-Hubbard model expects the Coulomb repulsions to be:

metal U
Ca 0.864 eV
Sc 0.668 eV
Pd 0.648 eV
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4 4.9

(c)

In Stoner-Hubbard model ferromagnetic metals are marked by

Ug(EF )

2
≥ 1 =⇒ g(EF ) ≥ 2

U

Sommerfeld coefficient is the electron heat capacity divided by temperature

Cel =
π2

3
g(Ef )k

2
BT

γ =
π2

3
g(Ef )k

2
B

γ ≤ π2

3

2

U
k2
B = 9.43× 10−3 J K−2 mol−1

Problem 4.9

(a)

H is the magnetic field, Mi are magnetisations of the sublattices, and a, b, λ are phenomeno-
logical coefficients.

We had Curie law from earlier

χ ∝ 1

kBT

so the temperature dependence of ais are

ai =
1

χi
− λself exchange =

T − Tc
Ci

(b) decoupled equations

Near the ordering temperature TN , M3
i ∼ 0,

M1 ≈
λ1

a1

M2; M2 ≈
λ2

a2

M1

The decoupled equations are (below TN where M 6= 0)

(λ1λ2 − a1a2) = a2b1M
2
1 = a1b2M

2
2
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4 4.9

(c) critical behaviour

a1(TN)a2(TN) = λ1λ2

Close to TN ,

M2 =

√
λ1λ2 − a1a2

a1b2

M2 ≈
√
a′1a2 + a′2a1

a1b2

(TN − T )

M1 =

√
λ1λ2 − a1a2

a2b1

M1 ≈
√
a′1a2 + a′2a1

a2b1

(TN − T )
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