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Example Sheet 1

Example 1.1

Without loss of generality, we consider systems of reference in which y and z coordinates are
perpendicular to the connecting line of events of interest in spacetime.

As? = A — Ax?
Transform rules:
cAt" = y(cAt — BAx) = cAt cosh ¢, — Az sinh ¢,
Ax' = ~(Ax — feAt) = Az cosh ), — cAt sinh ),

Proof by construction:

(a)
time-like: As? > 0
AAE — Az? >0

Ax
—-1<—<1
cAt

To find S’ where Ax = 0, we simp;y require % = tanh v, which can always be found for
real rapidity —1 < ¢, < 1.

(b)
space-like: As? < 0
AN — A2® <0
cAt
—-1l<—x1
< Ar <

To find S’ where At = 0, we simp;y require %‘; = tanh v, which can always be found for
real rapidity —1 < v, < 1.

Example 1.2

(a)
InS, At =tp—ts >0, Az = 0.
In all frames S’,
At' = At cosh ),
At > At >0
ty >ty



1.3

(b)

If event A causes event B, At =t —t4 > % >0,

A
At = At cosh i, — 27 Ginh ¥, > At(cosh ), — sinh,) >0
c

As? = A2 — A? >0
AA? — Ar? >0
!
Ar > AT
c

in all frames. [ |

Example 1.3
(a)

ct—agkisx’ =0 4 =q ¥=2a 2 =3a 2'=4a

glct’-axis
ct' = 4a
ct’ = 3a
ct' =2a
ct' = la

ct' =0 2/-axis
L r-axis

2’ = x cosh ), — ctsinh,

ct’-axis: x cosh), — ctsinh, =0

B _4 ( sinh,
915 = tan <Cosh ¢U)

0, = tan~! (ﬂ) — tan <E>
vy c

ct’ = ct cosh 1), — x sinh v,

x'-axis:  ct cosh ), — xsinh, = 0

Similarly



(b)

As? = 212 — 12

Since we are interested in constant As? curves,

2
0As P O (L P
ox N ox Ag2

If the curve does intersect the ct-axis, at = 0, we have

oct . .
—_— = (0 = curve is parallel to z-axis
01 ) Ap

Similarly, taking derivative with respect to ct, we get

2
0as Y R N
Oct ct ) x .
As? s




which means at ¢t = 0 (intersecting z-axis)

0
gz = (0 = curve is parallel to ct-axis
ct ) Ay

These curves intersect the coordinate axes of different S’ frames at the same values of z’
or t’, as shown in the plot above. The new axes can then be calibrated linearly with respect

to the test length o’ = vV —As?, ct’ =V As?
(c)

ct-axis ct'axis

/7’ -axis
is dilated 5

T-axis

A clock at rest in
S’ measures ct’ =

ct > ain S so cloc

a
Measured \length
[ <ajn S.

Example 1.4

Dissolve the 3-vector coordinate r = (x, vy, 2)7 into components parallel and perpendicular to

g
parallel perpendicular
p p
L, r-Bs ., r-fp=
TE TR T T



1 1.5
T (Bzz+%2?l+ﬁzz) 8
Bt + By + 5.2) e Byt Be) o
. = ( g ) |y Geatbes 8,
— (Bzx'f‘ﬁyy"rﬁzz /BZ
Then the rules for the components can be applied respectively:
ct' = ’)/(Ct — ﬁT‘”)
r= (7’” ﬁct) ﬂ + FJ_
5
Reorganised into matrix equations
AT IO s i I A N PR PR I
z e VFE VT V| | . 0 1-% a 7| | 2
= 2 2
Y —B, 7B % vﬁ}gfz y 0 -2 1-5 Znlly
/ 2
: 8. 78 ViR v | \* 0 - 1-22 5 ) \?
ct’ v e By b ct
ZE/ — _75x 1 + O‘Bg O‘Byﬁz O‘Bzﬁx X
y/ _'Yﬁy O‘ﬁxﬁy 1+ 0465 O‘Bzﬁy Yy
2 _762 O‘ﬂmﬁz O‘ﬁyﬁz 1+ O‘BZQ z

Example 1.5

Writing down the transformation law from ZMF to S’ which is the rest frame of the backward-

moving particle

ct’ = ~(ct — Bx)

' =~(x — Bet)
Plug in x = vt
2 | 2
ct/zy(c—ﬁv)t:ict
2y /1 — 22
2
a:/:’y(v—ﬁc)t:—vt
1 — v?
, 2v
= V) = — = 5
v 14



Example 1.6
(a)

The direction of the rdv parallel to the direction of motion is contracted:
l, =y lycosd

The direction perpendicular to the motion is unchanged. That gives

6 = tan~! 7 sin ¢’
cos 0’

(b)

Write down the transform rules in standard configuration and plug in ' = u/t' cosf,y =
u't’ sin 0:

ct v +yB8 0 ct! (e + pu’ cosd)
z|l=1+8 v O] |utcost | =|~Wcos® +pc)|t
Yy 0 0 1 u't' sin ¢’ u’ sin 0’

The angle observed in S frame is § = tan™! (—1,‘/ sin 0" ) If the bullet was a photon,
~(u! cos 6'+v)
0 — tan—1 <—¢2—v?sne )

ccos 0/ 4+v

Example 1.7

In S’ frame, the angular distribution of photons is

: /
Pode = 2 g
Po<g <g)— -7 b 1-cost
-0 =0 2 |, 2

If 0 is the angle that the photon makes with respect to the motion of the m-mesons. As

computed in question 6.(b), the transformation rule of 6 is § = tan™! (—m) Applying
reverse transform, 6’ = tan™! (—Vigs”zfif').
Substitute in P,
1dcost'(0)
PO)=———7—=
() 2 de
P(@)——ld 1 . 1d (ccos® —v)?
Co2d0\ 1+ @2(—*%1;9 ©2d0\ 2cos?f — 2uccos B+ v2 + (2 — v?)sin? g
c(cosU—v



1d [ccost —v

P®) = - 2d6 (c - vcos@)

—csinf(c — vcos) —vsinf(ccosh — v)
P®) = 2 ( (¢ —wvcosh)? )
_ 1sinf(c* —v?)
" 2(c—wvcosh)?

sin ¢

"~ 292(1 — Bcosh)?

Example 1.8
(a)

cdt!\ [ v —B) [cdt
do’ | =8 ~ dz

Here, 5 and ~ denote constant factors at a specific time
, d dz d yu —~fBc
Y= war C@yc —vfBu
;A qu—np

e = C@yc—vﬁu
g ¢ dyu—np
“ o (ye—vBu)dtye — yBu
a, = L a
G

Now we have the acceleration transform rules between the instantaneous rest frames of the
moving spaceship and an inertial frame

du 1

Ezﬁfﬁ)
du  dt du
dr  drdt
c
" e
1
:¥ (1)
1 du
1 uzg_f(’r)



For u(7) to reach ¢, any finite proper acceleration has to be supplied for a infinite period of
time.

(b)

/adt(T)u = Azx
0

/ d7 ccosh 9T tanh 97 _ Ax
0

c c
/ dr csinhg = Az
0 c
c? g7,
— [ cosh=— — cosh0 | = Az
g c
A A
coshgT _9 f +1
c c

7. = 3.02 years (taking g = 9.8 m s~ ?)

Example 1.9

Constant 2! hypersurface equation in Cartesian coords: z' +2? = const. i.e. a plane parallel
to x3 — axis;

Constant 2’? hypersurface equation in Cartesian coords: ' — 22 = const. i.e. another
plane parallel to z3-axis;

Constant 2’ hypersurface equation in Cartesian coords: z® — 1 [(21)* — (22)?] = const.
i.e. a surface constituted of stacked hyperbolae.

T

1 1 0 1 1 0
0x¢ Ox?
g;b = 6Cdﬂm = 1 -1 0 1 -1 0
o 207 27 1 222 227 1
ac cb
24+ 4(z?)? 422t 227
/ 2.1 12 n
Gop = dx"*x 24+4(2")* 22
22" 2" 1

ab
In general g, #o for a # b, so the coordinate system is not orthogonal.

dV = \/ﬁdx'l dz”? da”

10



1.10

Zs3

Surface x}

Surface

Figure 1: Sections of examples of such surfaces

AV = da" da”? da”®\/2(2 + 4(22)2) — 8(22)?
dV = 2d2" da* dz”
Example 1.10
2? +y* + 22+ w? = d?

wdw = — (rdz+ydy + 2dz)

(rdz + ydy + 2dz)?
2

ds® = da* + dy? + d2* +
aZ — a2 —y? — ;2
Let x = rsinflcos¢,y =rsinflsing, z = rcosf,r = asiny
a2

ds? = dr? 4+ 2 d6* + r* sin” 6 d¢p?

02 — 12
ds? = a*(dx? + sin® x(df sin® § d¢?))

Metric for this 3D Riemannian space:

1
Gab = CL2 Sin2 X
sin” x sin” #

2w,
V:/// \/aﬁsinQXSinzxsiHQdedegb
0,0,0

11



1.10

= a®2r // 7 sin® x sin f dy df
0,0

= 21%a?
The embedded 2-Sphere defined by x = x¢ has line element

ds? = a?sin® xo(d6? sin? @ dp?)

1
2 2
Gab = @ S1I1 X0 ( SiHQ 0)

2w,
A= // /(a2 sin xo)? sin” 946 dg
0,0

= 4ma’*sin® xo

Therefore its metric is

The area is

12



Example Sheet 2

Example 2.1
(a)

, 0
a dr'a
ox®
amla

e = e, + ey + 21%;

e

€p

e, =e; —ey+21'e;

e; = €3
These are the tangent vectors to the intersections of the coordinate surfaces.

g(eaa eb) - 5ab
2+4($/2)2 4.17/2.17/1 21./2

g(el,e) = 4% 2442 22| =4y
272 221 1
ab
Example 2.2
vV =€
v = v, — v = (1,0,0)", v, = 60" = (1,0,0)
o b
; - a::, Up = (LLO)

Example 2.3
(a)
AabTab = Aab<T(ab) + T‘[ab})
AabTab — AabT(ab) + Aab,—T[ab]
Using (anti)symmetry under exchange of dummy indices, we have

ATy = —A"Tpey = 0



- AabTab = Aab,—T[ab]

Similarly,
S®Tap) = = 5" Tjpa) = 0

SabTab — SabT(ab)

(b)
Ay = 040, — O
0 0x° 0 0x°

= U | — 7 Uc

ax/b ax/a ax/a 8:&”’
B oxt 0 83:CU B ox® 9 8:UCU
02 9z \ Ogle € ox'e Oxd \ Oz’ ¢
Oz 92° O, _ Oaf ozt Jv, o ozt 0%x° B ozt 0%z°
92 9z'e 9rd Qe Hal Dxe “\ 9x® Oxdox'e  Ox'e DxdOx'

0z 92° Ov, _ Oaf ozt Jv, ; 9%x° B 0%x¢
92 9'e 9rd Qale Hal Dxc “\ 9xoxle  Orledx’
c d
0x¢ Ox -

- ox'e Hx't cd
The components of A, does transform like a type-(0,2) tensor.

0Auw N 0Ay. 0A,
ox¢ ox® Oxb
5. 0z9 0 Ox° 9z’ 0z9 0 Ox° Ox' 9x9 0 Ox° Ox'
abe = Jgle a9 O'a Oz L + Oz'a 0x9 O™ Ox'e” ! + Oz’ 99 z'c Ox'a” <l
_ O0a9 Ox° Oxl 0A.; 09 0x° 0xf 0A.;  Ox9 02° Oxl DA,
© Oz Ox'e Oz Ox9  Ox'e Ox' Ox'e Oxd  Ox' Oz’ Ox'e OxI

ox9 ( 92z Oxt %'t a;ﬁ) ox? ox?

Babc =

+ A, + b
I\ oze \ 0z90z'a 9z " 9x90x" O’ ox't ox'e

. 0?x¢  Ox’ 0%z’ Oz°
big chunky term = A.s (8&:’0(91:"1 5 + 9292 D' cee L

but A.; is antisymmetric in every frame by construction, so

: 0%x¢  Ox’ 0%z’ Ozt
big chunky term = Ay <8x’cax’a 50~ e &T’“) cee

0%z Oxf .
as ©%

Joe D D ey © 1s symmetric under exchange of first two lower indices
0z’ Ox

denote

14



2 24

cab
B - Ox9 0z¢ Oxf DA,y O0x° Oxl Ox9 DAy,  Oxt Ox9 Oz DA,
abe T Qgle Qe O w9 Oa'a D' Da'e dxe  Oa’ Oa'e Ox'e Oxf
_ 0x9 Oa° oxl (0Ac;  0Ap,  0Ay _ O0x9 Ox° o'
( o0x9 dx® 8xf) ~ Ox'e dx'e frt

big chunky term = A.; (0, — Off, + Off, — 0/, + 6/, 611, ) = 0

B, =
abe axlc ax/a al‘lb

Bape is antisymmetric under exchange of any two indices.

Example 2.4
(a)

g = det(gas)

1
~0.g = Tr (g“bacgbc)
g

0eg = 99 0cha
0eg = 99" 09y, using symmetry of gy,

(b)

vC.gab = aCgab - chagdb - chbgda

1

= acgab - §gde [(acgae + aagce - 8egac)gdb + (acgbe + 8bgce - aegbc)gda]
1

= 0OcYap — 5 [(acgab + 8agcb - 8bgac) + (acgba + abgca - aagbc)}
1

= OcYap — §[acgab - 8cgba]

=0

(c)

1
Fgc = §gae(abgce + ac.gbe - ae.gbc)

Turn off summation convention for the rest of this question

a 1 ae
1_‘bc - 5 Z g (abgce + acgbe - aegbc)

15



Using g, is diagonal, we have

1
gc = §gaa(abgcc(sac + 8cgbbéab - aa.gbc(sbc)

For a # b # ¢,
6ab7 5bc> 6ac =0 = Fgc =0

If two of the indices are the same, we can get

1 1
re — —g% o = e a _ aaaa
ac 2g g ca bb 29 Gbb

If all three indices are the same,

a 1 aa
Faa = 59 aYaa

But for diagonal matrices, the diagonal entry of the inverse metric is the reciprocal of the
diagonal entry, i.e.

gaa — g;al

We can thus rearrange into

[t = 0. In(Vigal) = T, b= g, e

Example 2.5
ds® = dp® + p*d¢?

(1
e p2 ab
(a)

From the last question, we know that the only possible nonzero connection coefficients are

I, =T =0d,ln(1) =0

1
Fﬁd) = Fﬁp =0,In(p) = p
1
1
¢ _ _
e, = —2—p28¢1 =0

16



(b)

Vv = 0,v" + T%0°
1
= 8pUp + 8¢U¢ + —v”
p

P O v
_v + po,v +8¢U¢
p

P
= —ap<zv ) + 8¢U¢

To translate this result in terms of an orthonormal basis vector, we use 04 = pv, such that
lv)* = v2 4 03, and obtain'
Op(pv?) 1.
V:l’l}/a = —p(p ) + —8¢U¢
P p

(c)

Laplacian of a scalar field is given by

Vif=V(Vaf)

= gbavb(aaf)
d,(po
= M + %a;f

Example 2.6

212 | a2 2 1
ds® = df” + sin” 6dop gy, = ( sin? 9)
ab

(a)

Again we use the results from question 3. The only possible nonzero connection coefficients
of this coordinate system are

Iy =Tgy=0sIn(1) =0
F?{b = Fie = OpIn(sin ) = cot §

15, is not a vector component, nor is the “normalised basis” a basis, in the sense that is usually used in
this course.

17



2 2.6

1
0,1 =0

" 2sin26 ¢

1
Fi¢ = —589 sin?f = —sinf cosé

o _
FGQ_

(b)

L = ggupi%i®

oL d oL

oz¢  dudic
agab.a-l)_ d a b -ash
Pl T = @gab@cx +2 50)
agab.a.b

et T 2@<9d’“’ )

On the surface of a sphere

. dé
2 sin 6 cos 6¢2 = 2d—
U

0 = 6 — sin A cos >

d/. 5,
0—2@(sm ng)
0 = sin? 9(cot9 PO + Qﬁ)

As we would’ve obtained from (a).

0+T%,0"+0+0+...=0
and G+T0d0+0+0+...=0

For a circle of constant latitude on a sphere # is a constant. For this to satisfy geodesic
equations

0= —siné cosf ¢

0=

which gives cos# =0 = 0 = 7, the equator. In general u, the affine parameter is linear in

0.
(sind = 0 is not accepted because the coordinate system is degenerate at the north and
south poles.)

18



(c)

do?

— +

do

v =ley
D a
Y
Do
dv®  dab
—T%0¢=0
dp g Y
do do
_1—\9 c _1—\9 c_
1 0V +dgb U 0
0
@ — sin 6 cos Av? =
dv? oo
@%—Fmv =0
dv?
%4—00*58@9—0

Solving the two equations and plug in initial conditions

sin 6 cos Bv® = — tan 01

— cos? Gpv? =
v? = Asin(¢cosby)
0¥ = sinfyA(1 — cos(¢cosby)) + 1

After parallel transport, we will have

v? — —

sin 6,

1
—_— = —
sin 6,
1
v’ = ~ i sin(¢ cos 6y)
v? = cos(¢pcosby)
sin (27 cos ) v?

which is not the same as what we started with, but

throughout the transport.

2 2
V0% = <"09> + sin? 6, <v¢> =

= cos(2m cos by)

1

19



Example 2.7

If C is a geodesic in M, the distance between the points along C is extremal among the set
of distances of all other curves, that is, including the set of distances of other curves in H.
Therefore, C is also by definition a geodesic in H.

The converse can be falsified by the following counterexample.

geodesic in H

In Euclidean spacetime, the blue curve is a geodesic in H because it is the shortest path

connecting A and B. However, it is not a geodesic in M, as there are shorter paths connecting
A and B.

Example 2.8

hypersurface H: M dimensions

Euclidean space: N > M dimensions

(a)

Consider ds® which is invariant,

ds? = Sap dz® dzb = g7y du! du’
Oz Oxb

5abww du! du’ = gry du! du’

0z Oxb

grjg = abww

(b)

Start with the explicit form of the metric connection

rb. — 0%z Oub
TE ™ gud uk dze

20



Oxl 0x¢ 0%z Our
ou! Oul Oul duk Oz
ozt 0%z®
FL = Ope—e— c
JILLTK = % 0T gl guk
ox® O%xb

e, =6p——

gLt K Youl Ou’ Ok

gril5 e = S

(c)

The vector A is invariant under coordinate transform, i.e.

AIe] = Aaea
0 0
AI_ — Ab_
ou! oz
I @ _ 0z
ou! oxb
ox®
I _ Abga
ox®
I — Aa
oul

(d)

Given that the components of A are fixed in the embedding Euclidean space, we have

ox®

oul |,

The vector A*(Q)e, is not a vector in the hypersurface H, but can be decomposed into
components parallel and perpendicular to the tangent space at @),

A% Q) = A*(P) = A'(P)

A"(Q)e, = Ajle, + Afe,

21



2 2.9
where Aﬁea, lying in the tangent space, can be expressed as Aﬁ(Q) % . Now we have
Q
Oz Oz u
Al(P) Dl Pea = Aﬁ(@) Dl Qea + Af e,

Given the basis vectors are mutually orthogonal we can write the above as a vector equation

ox® oz®
I I a
Approximating to first order,
Aﬁ(@) = AI(P) + 6A!
ox® ox® o 2
— 5 J 5 J
ou! 0 oul |, Oulou’ w’ +0(0u)
P
ox® o
=§AT Al(P T4 A
0=0A 57| T4 )3u18w7p5u AL
ox® Ozt 9z Oxb
_ 19T 0r” I T o
= da0 4l oul oukx + 0upd oulou’ ouk ou

0 ot o o
oul Ouk oulou’ ouk
b 2,..a

grgdA = =6 or’ Ow Alsu’

P K ul u

g6 A" = —gr Ty, A su’

g6 A" = —gg 7, AR6u’
§AK = —T%, Alsu’

using (a)
where we swapped dummies L and [
relabeled I — K

The same as what we would’ve obtained from the parallel transport equation,

SAK + 15, (P) AL (P) 6u’

_ DA%
==t =

where t is an affine paramter for the curve along which the vector is transported.

Example 2.9
(a)

22



2.10

Since u,v" is an invariant object we can always move to the frame where @ = 0, |v] =V,

where f—t =
TE

I
Uu,v

(b)
The photon 4-momentum has expression
m
= 4%
2 dt

u!p, is an invariant object, so we can simply evaluate it in the rest frame of £.

E —
u'p, = (c,0) (f,p)

= EJ7 = th
Similarly

UVpV = hVR
and we have

ve  uf'p,

VR B vDy

Example 2.10
Proper acceleration is given by

du#
b -
@ dr

= ’Yu% [/Yu(c7 ﬁ)]

u-a,
= Tu %?; 2 (Ca u) + ’Yu(()? a)
u-a, .
= 730—2(07 @) + 72(0, Q)
(u-a)? (u-a)?
—a’ = a,at = 737(02 —u?) — QVST
2 6(u 3)2

4

— V2 a

23



2.10

If the motion in S is circular with radius r, we will have

which gives

24



Example Sheet 3

Example 3.1

Let the four-momenta of the incident and stationary electrons before and after the collision
in the lab frame be

I 0 K —p = L EQ

Pr=(me0) ¢ =(umeq  P=(—p) @ =(

respectively, we have conservation of 4 momenta throughout the process

? q:>

pll + qﬂ — ]5’“ + qﬂ
In the zero momentum S’ frame, 5= —¢, and || =|q] =|p| =|p], so we can draw

ZMF

Write down the transform rules in with the incident particle velocity along z plug in x;, =
u't' cos b, y, = u't' sin 6:

ct cosh2  +sinh% 0 ct/ cosh 2 (c + Bu/ cos )
zq | = | +sinh2  cosh2 0 | w't'cost | = | cosh 2 (u cos@’ + Bc) | ¥/
Yq 0 0 1 w't' sin ¢’ u’ sin ¢’
lab
q
,,,,,,, a g
o)
D

The angles observed in S frame have
sinh? (%) sin?(6')

cosh? <%> sinh? <¢2—“> (cos?(6) — 1)

tan(r — ) tan ¢ =

25



1

tanftanp = ———

cosh? (%—")

2

tanftan ¢ =

cosh? <%“> + sinh? (%) +1

2

tanf tan ¢ =

Yu + 1

In the Newtonian limit for momentum and kinetic energy which is quadratic in momentum
to be simulataneously conserved,

PAi=¢ pi——t——) =g
tanf  tan¢

2 2
p° cos*(6) + . + p?cos* (@) = p* + ¢°

tan f tan ¢
2p% 2
Pl 9
tan # tan ¢ P
tanftan ¢ = 1

Which coincides with the limit u — 0, % —1- % ~ 1.

Example 3.2

In the mirror frame, the photon has 4-momentum (z-axis omitted)

hv'
/ hv'! ¢
p* = | " cost
hv'

c

sin 0’
which gives the invariant quantity
TP eeorPnoton = M/ Miinor = W Masiron(1 — B cos 0)
where 8 = 2, and the frequency shift
V' =,v(1+ Bcosb)
After reflection, conserving energy and momentum parallel to the mirror plane,

hv'
—/ h /C
pr=|—"%~cost
i
h” gin 0/

C

26



A similar invariant quanity gives
V' = 5.0(1 — feos g)
1+ Bcost
11— fcos¢
where ¢ is the reflected angle. Requiring the momentum component parallel to the mirror
conserved in lab frame, we have

ANEAN

_ 1
p’ = hw —Ccos ¢
sin ¢
@quﬁz Esmé’
c c
v sind
v sing
1—pfcosg 1+ Pcost
sing  siné

1+ pBcosf £+ (S + cosb)
B2 +2Bcosf + 1
sin ¢

Yo(1 + %+ 25 cosf)

sin ¢ = sin ¢

sin ¢ =

So the reflected frequency is
Yo (1 + 8%+ 2B cosO)v

v

Example 3.3

Assume that a electron did emit a single photon. In the electron’s initial rest frame

2 Pinit = 0

hv
Eﬁnal Y, Tnec2 + ngQ + hv Pfinal = 7 — Pe
For both quantities to be conserved, the only solution for v is 0, so no single photon can be

emitted from an electron.
Similarly, assume that a massive did emit a single photon. In the particle’s initial rest

frame

Einit = mec

? Dinit = 0

hv
Eﬁnal = hv Pfinal = 7

Einiy = mc

The two conservation conditions cannot be simultaneously satisfied, so no massive particle
can decay into a single photon.

27



Example 3.4
(a)

The total 4-momentum is conserved, so

lab

p1 = ympu P2 = —Ympu

Zﬁafter =0 27um62 = Ep1 + E;DQ + Eﬂ'

The minimum total kinetic energy for the reaction to occur is when E,, = E,, = m,c?, E, =

MyC?

Ekmin = 2(Vu — 1)mpc2 = m,c?

(b)

If one of the protons is stationary, denote the speed of the the incident proton v, and transfer
to zero momentum frame, which is reduced to the scenario in (a).

B} = 2(v, — 1)myc® = myc?
transform back into lab frame by a Lorentz boost of u,.,

My )

(ZMF energies) E] = Ej = + m,c? = cosh (b, )m,c

By = cosh(1), + 1, )m,c?

Ey = cosh (i, — 1y, )m,c?
For one of the particles to become stationary, simply require u, = u, which gives minimum
kinetic energy in lab frame

— 2 2
Ey = yympc” — myc

Ey = <2 cosh?(1,,) — 1>mpc2 — m,c?

2
E. = 2<m7r —i—l) —1 mpc2—mp02

2m,,

m2 2m,

Ep=|—+=—"+1
k _ng my

2 2
mpC — MyC

Ek = M + 2) TTLﬂ-C2
2m,,
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Example 3.5
(a)

The second field equation consists of even permutations of our, a field equation of odd
permutations can be generated using antisymmetry of F),,,.

OpFyy + 0, Fpy + 0,F,, =0
antisymmetry —- —0,F,, —0,F,, —0,F,;, =0
sum together — Ok =0

(b)

The second field equation, in the form in (a), allows us to write F},, = 9,4, — 0,A,,, then
the first equation can be written as

Ou(O"A” — 8 A") = pigj”
0, 0" A" = 1g”

Where Lorentz gauge 0,A" = 0 was used. Definitions of the electric and magentic fields
through A* = <%, /Y) are

=
I

|

|
4
-
s ]
I
4
X
s

N A . .
V-E:—avat — V% V.-B=V.-VxA
— 188(]5 2 g k
V.E:_Qaa_v¢ V-B:@eijkajA
V.E=20,0'A% V - B = ¢,;,0;0; A"
V-AZCQ,uopzﬁ V-B=0
€0
. .90 A
VX B=Vx(VxA VxE:—%—VXV-¢
_ ., . 0B
V X B= eiekijﬁjekmnam/l V X E = —E — eieijkajakgf)
S - 0B
X B = €; (5'Lm5jn — 5m§jm)8]8mz4” V X E = —E

xézv(v-ﬁ)—v‘%
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3 3.5

5 1 (9V¢> 1 92A
B = pA o — 2
VX B= T 00 G55
~ 1A 10E . 1024
VXB=—=———= - ==
cor 2o M T @
. 10E
V X B = pyJ —
Ho 20
(c)
The electric and magnetic fields
- ) — 1 . . -
E:_CFOZB—; B:_éez‘ijjké;‘ — F’L]:_EZ]kBk

are not tensors, but F'*¥ is a tensor, so the components in two frames are related by
F'W = AR N FPT

where
—By
AP = _6’7 Y

pv

Working in natural units ¢ = 1 to simplify expressions

—ByE! —yE' —yE?+ fyB° —E° — BB’ v =By

i _ | VB =pyE' ABE*—yB®  yBE*+ 4B || =By v
B2 B3 0 _B! 1
E3 —_ B2 B! 0 1
0 —P(-FYE —(E+BY) —(E - BB
_ | *a-pHE 0 v(BE® - B%)  ~(BE®+ B?)
= | (B2 - 8BY) (B - BE?) 0 ~B'
V(E® + BB?)  —y(B* + BE?) B! 0

Sub in 72(1 — %) = 1. Reading off values for E and B, and putting back c,

E! B!

E=|~y(E?-uvB?) B=|~(B*+ %E?)
V(E® +vB?) V(B — ZE?)
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3 3.6

(d)

The squared moduli of the fields are

|2 S
El = C2F02F01
|2 1 .
Bl = ZeijkeimnF]kan
=12 1 ik rmn
|2 1
|2 1
F F,, = F®Fy + F"Fy; + F Fy + F™ F
12
L L2
FI = 0= 2— + 2\
S2 2pWp,,
I

512
B’—

The speed of light and the contraction of two tensors are both invariant. Therefore, ¢

| E?| is an invariant quantity.

Example 3.6

The spacetime interval of an infinitesimal section of the worldline of the satellite is invariant
ds* = Gy dat da”

In the weak-field approximation, gog ~ (1 + i—‘f) = —gn

20
ds® = (1 + —(T)) <02 dtg — dx§> = ¢ drc?

C2

1 20 (r)\ 2

—(1+ 57")) dtoZdTC
Va c

Where 7¢ is the proper time measured by clock on the satellite, and ¢y the time measured at
a point ® = 0 in Earth’s rest frame Sy. Similarly, the proper time measured by the clock at
North Pole, which is at rest in Sy frame, satisfies

20
ds? = (1 + (R)) <02 dt%) = 2 dreo?

c2
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1
20 2
(1 + (R)) dto = dTCO

c2

Finally, substituting in u? = GMTm from Newtonian dynamics,

At zi(Hz@(r))%(H@)

ATco Y c? c?

(o) o2 ()

[NIES

VI

N L[®(r)  2&(r) 2®(R)
~ L 2 l c? * c? c?
3GMm  GMm

~ 1+

ez Re2

Example 3.7

The two line elements imply metrics

$2
Gab = ( y2> and Jab = (y x)

respectively. Exploiting the diagonality of the metrics, the only nonzero entries of the con-
nections are

1
FZC - §gae<abgtle + acgbe - aegbc)

1 1
first manifold I, =— I, ==
z Y
: 1 1
second manifold e =—-——I% =——
vy 2x 2y
yielding curvature tensors
Rabcd = _aargc + abrgc + FZche - Flc;crge
first manifold R, =0, R,"=0 = R, =0
1
second manifold R, = —0.1, = 72 — R, #0

Therefore the first manifold is flat and the second is intrinsically curved.
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Example 3.8
(a)
Rutea = ga. (—0uT. + 00, + TL. T, — TLT, )
Using the symmetries
Raped = — Rpaca Rabed = Redab Riapga =0
In 2D there are 16 components in total,

12 components of the form Rii.. = Ros.. = R.i1 = R.99 =0

Remaining 4 components are related by R1221 = —R2121 = —R1212 = R2112

Therefore on the 2-sphere there is only one independent component, which we can choose to
be Ria1o

Rygsop = sin? 0(—0y cot 6 + 050+ 0 — cot 0 cot )

_in?d secd 1
a tan?f  tan?6

= sin? 6

(b)

The equation of geodesic deviation can be lowered to

D D¢ da® dac
DuDu ™ dy du

Gea ¢

Substituting in £ = (0,9)7, 2® = (7u, 0)T, the ¢ components of the left and tight hand sides
are

D¢® & Dg® dz® dz
9e47 (f%m TloDy ot Gy du
do do
— ain?2 ¢ ¢ ¢ _
— sin? O (am (900 + T4,0) + T4, (208 + 1 ¢5)) =Ry 20
=sin? %6 (0y cot 6 + cot O cot 0) = — sin?(0)7%6
20
=sin? 729 <— SeCQ + cot 6 cot 9) = —sin?(0)w?5
tan® 6
= — sin® 729 = —sin?(0)7?9
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The # components are

D¢? D¢l da? dz°
GooT <30 Dt + T = Dt Rdbc@@@fd
gd
=7 | Ogm | 9p0 + ng Du +0 =0
=0 =0

Indeed both components satisfy the equation of geodesic deviation.

Example 3.9
(a)

In Newtonian gravity,

d2z? 09

ez~ Ox

’z'  9¢

Az oz

’¢ (0p  0¢
- —(aﬁ- o)
d2<i N Cj < a¢)
dt? oxI \ Ox'
d2€i N a2¢

d¢? o0zt 0x? ¢

(b)

Starting with the equation of geodesic deviation, using D(e") = 0 for parallel transported
vectors

DDE_, ditde,

Dr Dr ¥ dr dr
D D(£%(é,)") doeeda? .
S ) R BT T bl VY
Dr Dr vaB qr dr <€p)

dzf

2 1S (aale*ea)) + ThEC))

Dr
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D(éDa)MZO
D da? o\ dxﬁ o Bebin \p
5|6 T (95(e) + T (E0) ) +(Ea) G058 | = Bypg'uu’€(&,)
_ D(en) d de ,
¢ D(DT) t(éa)" dr dT R”a'g “ uﬁff’(e )

As promised by Fermi, the general intrinsic derivative can be reduced to a simple derivative
in a local-inertial coordinate system in the vicinity of a time-like geodesic.

(c)

In the weak field, time-independent Newtonian limit, assume (é,)" ~ 6, 7 ~ t + O((%)2)>
Guv = N + Iy, the equation of geodesic deviation becomes

d2¢r
d¢?
d2gr
di¢?
d2 7

de ~ %[ (0:0uho0)&" — (0:0;h00) €
d2fi ~ _82(C2h00/2)€j
dt? 0xtoxI

2
~C Ruoouéy

2 1 1 1
~ 777”— ((%c‘%hoo + —23tathw - —8tavh0u - Eatal/hv(J)gy

which is of the same form as the expression in (a).
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Example Sheet 4

Example 4.1 Killing’s equation

Given the metric components g}, are invariant under infinitesimal coordinate transformation
x® — 2% + &%, remembering V,g,. = 0, retaining up to first order only,
gla(@') Az da' = goy(z) da® da

;o 0z 0z°
ga(z') = W@Qab(l’)

o¢” ol ad
guwz(&—éJ(@—éﬁ%mﬂ

. . e a cb @é’a b 8§b a
invariance — Ged(T) + £°0egea = | 0505 — pe 0g — @56 Gab ()

. B aéa aéb
—£°0cfed = %gad + wgcb
—£0egea = (V€ = T8 gaa + (Va€® — T5.6)9e
Rename some indices —&0efed = Vela + Vae — (Gaal oo + gacl g0 )E°

‘vcgd + Vclérc - O‘

where from the second-to-last line to the last line the following was used:

8egccl - gadrge - gacrge - Vegcd =0
(gadrge + gacrge)ge = geaegcd

If the spacetime metric is independent of 2°, we have (ey)® = 06§ = (€0)s = Goad% = b,

Vi(€o)a + Valeo)s = Vigao + Vageo
= Obga0 + Oagbo — L'pa9c0 — gpgeo
= 0b9a0 + Fagbo — 64 (Dagap + OGda — Oalav)
= Obga0 + 9agbo — agob — FbGoa + oGab
——

0
=0

Indeed e satisfies Killing’s equation.
If t is the tangent vector to a geodesic affinely-parameterised by 7,

ja_ da?
Cdr
D(]f)a: ) — tb(Vb(éat“))
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4 4.2 Dilation on a satellite

at”
% = "V, 60 + 176 Vit”
symmetric antisymmetric
S ~ =~ S~
D(E—T) = " Vg =0

The intrinsic derivative of £, is thus 0. Since &,t* is a scalar, the intrinsic derivative coincides
with the directional derivative along the curve. Therefore, £,t* is constant along the geodesic.

Example 4.2 Dilation on a satellite

()

The Euler-Lagrange equation for the Lagrangian L = g,,2"&" is

-1
i ? 1—2—'u 2 — 1—2—M f’2—r292—rzsin28qz52 =
oxH r r

d 0 2 200\ 1o 2p _1-2 242 2 212
a%[c<l—7)t— 1—7 7° —7r°0° —r°sin” 0¢

0
. _2 A ]
Bkt (1 2) B o 4 sin® 002)
—2r2 8in 0 cos H¢>
0

202(1 - 2)i + 2%
—1 -2
—2(1 _ 2-*‘) i 4 2(1 . 2—“> 22
—4r7i0 — 2r20
—4r7sin? 0 — 4r? sin 6 cos 08¢ — 2r? sin® ¢

Formally, the geodesic equation is

PV i =0

. Vo
T +wa:p =0

The only nonzero coefficients can then be read off from the vector equation

1
Ft
rt %—27‘

2 -1
. e 24 r AN
-1 (1) ()
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4 4.2 Dilation on a satellite

24 2 .2
Iyy=—(1——F— r,=—(1—-—/— 0
0o ( r)T 56 ( 7ﬂ)rsm
o, -1 I%, = —sinfcos
ro r bp — S1n ¢ Cos
¢ :} é :C089
ey 99 sing

(b)

The spacetime interval of an infinitesimal section of the worldline of the satellite is equal in
all frames. Wlog, put the free falling satellite in a geodesic of constant 7 and constant 6 = 7.
The proper time on the satellite and the Schwarzschild metric time are related by

d52 = gwj dQZ'u dx”
2 2\
2dr? = 2 (1 _ _:“) de? — <1 _ _,u) dr? — r?>d#* — r?sin? 0 d¢?
r T
2
¢ dr? 202(1——M) dt? — r* d¢?
r

The geodesic equation is

. . 2
—¢*rsin® 0 + tQ% =0
r

Combining both above

dt (37
dr r
The clock at rest at the north pole has § = 0,¢ = 0,r = R, its spacetime interval is
2
2 dr? = 2 (1 — E,u) dt?

Therefore, the proper times of both clocks are related by

Ar _dr (0 su\P( 2\
Ay dry r R
GM

This result coincides with the weak field limit when p = 5=
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4 4.3 Red shift

Example 4.3 Red shift

The frequency and energy of the photon as observed by Bob the falling emitter are related
by

hv, = E. = g,,v"(re)p”
where p is the 4-momentum of the photon and v = d;‘—TB is the 4-velocity of Bob. For a
massive body like Bob, v¥v, = 2.

& = g (r)o"(r)v" (r)

2 20\ !
= (1 — —M>vtvt — (1 — _,u) v "
r r

The geodesic equation satisfied by v* can be used to solve for the components of v, which
can only be nonzero in r and ¢ for a radially infalling particle.

/ 20 21 - R—r
E. = 1—=p 1—— 2 "
c p—l—c( r) u Tp
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4 4.4 Impact parameter

The photon momentum is parallel transported along its trajectory, using the fact ¢t and r are
the only varying coordinates,

dp* N
OZH—I—Fgﬁp pB

de T ro, T, T

d)\ = _Fttptpt_rrrpp

" p 2 4 2u\""
d)\__r2[(1_r)pp_ 1_r pp
dp”

=0
dA

where \ is an affine parameter such that p* = % and in the last line p*p, = 0 was used.

Therefore, p” is a constant along the null geodesic. The energy of the photon observed by
Alice is thus related to that observed by Bob by

Example 4.4 Impact parameter

Starting with p,p* = 0 for a photon in the equatorial plane

2 : 2\ :
(1 . —’u)c2t2 . (1 - —“) 2 p2d? = ()
T T

Since g, is independent of ¢ and ¢, the first integrals of two corresponding components of
the geodesic equation are constants

(1—2—“>t‘:k r’p =h

r

A light ray “grazes” the surface of a massive sphere at r, so 7(r) = g—;é = 0. Substituting in,
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4 4.5 Schwarzschild blackhole

Assume ¢ — 0 (and hence b — 0) as 7 — oco. The impact parameter b is defined as

b= lim rsin¢
T—00

20\ 2u\ ., R
lim [/8(1--“) &~ (1——“) f2——2] =0
r—00 T r r

Noticing

The impact parameter can be calculated as

) {bcosgb

b= lim —
r—00 T/’f‘2

o

b= lim 2

r—oo T

20
b—r~-—-=
" 2r .
GMg
b—r= 5
c

b—r=a~297x10°m

The light rays coming tangentially from the edge of the Sun will cast a image of radius b at
infinity (ignoring diffraction). The Sun will seem bigger by about 3 km in radius.

Example 4.5 Schwarzschild blackhole

Consider the Schwarzschild metric

p 20\ ! : ;
ds? = (1 _ _“>C2 de? — (1 _ _,u) dr? — r20% — 12 sin® 69>
r

r
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4 4.6

In region 2 where r < 2u, the proper time change A7 between entering region 2 and reaching
the origin

2 2 : :
Adr? = (1 — _,u) Adt? — (1 — _,u) dr? — r20% — r? sin? 09>
N > <

—~ _0

<0

1
9 5
cdr < (—M—l) —
A7'<—— r/2,u
1—r/2u 2u

AT < — /2 Sm9281n90039d9
¢ Jo cosf

AT<@
c

is always less than =&

Example 4.6

In an empty universe 7}, = 0 with vanishing cosmological constant A = 0, Einstein field
equation dictates R, = 0.

Ry = =0, + 0,1, + 10,17, — 17,17

o pv pvt op
The E-L euqations for the Lagrangian L = g,,2"%" are the geodesic equations of the given
metric

—2c%t {)’(2 + sinh? y (02 + sin? 9¢2>]
—2¢%t2 sinh y cosh 62 =
—2¢t? sinh? y sin 6 cos §¢?
0
2021
—2c%t2% — Attty
—2¢2¢ sinh? X(té + 2t coth y 0 + 2t'9>
—2¢%t sinh? y sin? 0 (tgb + 2 + 2t coth X)'(gz.ﬁ + 2t cot 90¢)

t +tx? + tsinh? X(éQ + sin? 9¢2>
_ X + 2tx — sinh x cosh v0?
0+2 C(?t'h xx0 + %tﬂ — sinf cos 9¢2
o+ %tqb + 2 coth xyx¢ + 2 cot B¢

o O OO
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4.7

The independent components of the Ricci tensor of a diagonal metric are

Ry = —8thpt + 8tFZt + FptFZt - Fftfgp

memova(te e ) ws(2) o

Ry =0

Ry = =0,I%, + 0,10, + 10 17 —T7 17,

Ry, = —1+ 20, coth x + 2(coth x)* + 2 — 37%

R, =0

Rgp = —sinh? x + cosh? x + sinh? x + Jp cot 6 + 2t sinh? X% — 2t cosh y + cot? @

1
— 3tsinh? Xy + sinh y cosh y(coth y + coth x)

1
RGGZ‘I’COShQX_ ~y +251nh2x+cot29—?>sinh2x

Sin
Ry =0
Ryp = —8pfg¢ + 8¢F£¢ + F§¢FZ¢ — Fg¢rgp
R¢¢ =0

Therfore this metric satisfies R, = 0. The spatial hypersurfaces are hyperboloids.
Consider the transformation

p=ctsinhy  t =tcoshy
which takes the metric to
At — dp? =¢2 <Cosh2 x — sinh? X) dt? + ?t?sinh? y dy? — ¢*t? cosh? x dy®
Adt”? —dp? = Ad? — AP dy?
ds? = 2 di"? — dp? — p?(d6? + sin® 0 dg?)

which is indeed the flat Minkowski spacetime expressed in spatial polar coordinates.

Example 4.7
Both velocities vy and vy satisfy
G v” = ?
Y€ — gz‘jvivj =c

90" = (0)°
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In an FRM universe, the metric takes the form
ds? = 2 di* — a¥(1) {dﬁ + 82(x) (ow2 +sin?0 d¢2)}

. Wlog assume v? = v? = 0 The geodesic equation gives

dv 1 N
O~ 3 nes)0
dv,,

a0

The 4-velocity components are therefore related by

VX = gy,
Toil1 _ 9xx(t2)
YoV Gux(t1)
Yot1 _ alt2)
v V2 B a(tl)

Asv; — ¢
hvy ¢ D
hvy ¢ - D2
v _ ally)
1] (I(tl)

Example 4.8

The Friedmann equations are

If A =0, the conditions p > 0 and p > 0 mean that d # 0, i.e. the solution is nonstatic.
If A # 0, the first equation for a static, pressureless solution is

47Gp = Ac?

the second equation becomes
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Therefore a static solution exists. Conservation of energy and momentum implies pa® = B
where B is a constant. Substituting in,

4G B 1
s _ TP —A2
a 3 a3+3 c

At a = aeq, % < 0, so the solution is unstable.
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