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Example Sheet 1

Sorry I handwrote this.



Example Sheet 2

Example 2.1

Sy = /dxdy|Q(x,y)‘a — /dxdy Az, y) (@Qj — R(x,y))

0(Q;Q)2 9 [0A(,)9,Q’
oQi  —  ark \ 9(8,Q)

o 0
a|Q| 2Qi = T Ok (/\(xay)5ki>
@‘Q‘aﬂ Qi = —0iA

The last line encapsulates two equations for x and y respectively.

Example 2.2

Euler-Lagrange equations:

3_£ _5 oL
96 "0(0u0)
—mpcte = h2g;b R (Vo)
Canonical momentum density:
oL
m(z,t
0= 50)
99
2_
=
Hamiltonian density:
_ 99
H=m (915 - L
0¢
2 2 2 4,2
7r2 h2 2 1



2.3

Example 2.3

_h o™ LOU h? . .
= Z<¢ ot - E) - %Vﬂ)vﬂf = V(r)yp™y

The Euler-Lagrange equation for ¢* gives Schrodinger equation of v

oL _, or
oy o (0,0%)
how ho  h?

J— - - - 2 —
VW —giar ~mia? Tam Y v =0
Loy R,

and vice versa.
The canonical momentum densities are

o oL _@w* ot oL __iiw
o0w) 2 9(0x) 2
The Hamiltonian density is given by
_ oy our
H = o +7 5 L
h2

H= S VOVE + V)

/dxH = /dx%V@DVW +/de(r)w*¢

0, due to vanishing boundaries the usual expression for energy
7\

Ve

h? h?
= UV ) +/dxw* <—%V2+V(r)> W
Example 2.4
— aQb*% _ * a2 %
L= ot ot VTVe—me
(a)
H :7;%+7T*8¢* —L
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_ 00708 990¢" 06" 09,
=St e o ot VO VOTme

_ 9¢* 9¢ . ,
=5 gt T VO VO Mo

(b)
o(r,t) = /2(di<a(k)eik#““ —i—b*(k)eikﬂ“)

27)3w
where k,2# = wt — k - r. For simplicity denote a(k)e—ik;m“ = a(k,r,t) and b(k)e—ik#‘”” _
b(k,r,1).

_ 543
gf 2 Zz(jr)k (a B b*)

d3k dBk/ ke ah - . o
¥4 = // @ (K)e s — pli)e M ) (a()e M — b (K )eith” )

d3k d3k/ ik — k! Yok % oh P ., .
¢ ¢:// 2(27T)32(27r)3 a*a e Fu—ka! | prp o—ilku—ky) — a(K)b(k) — a* (k)b (k))

zdek -
Vo= / 2(2m) 3w
. kk/d3k d3k’~ e N L
Voo [ [ S gy (000 + B ) — a(k)i) — 7 ()i ())
43k .
¢ = / 2(2m) 3w +b

o= // szzf 32d k/ (@ 4alic) + 5 ()b(le) + a(k)b(k) + @ (k)b (k)

using [ dPreHr = (2m)30(k £ k')
/ dP’rve*ve

_/k-k’d3k P’k
) w2 202m)

(@ (Qa(k)e (1 — 1) + " ()p(k)e 5K~ k)
—a(K)b(k)e @t (k + k') — a* (k)b* (K )e @t (k + k’)>

_/ 2?271:) 212)2 (a*(k)a(k) + 0% (k)b(K) 4 a(—k)b(k)e 2! + a*(k)b*(—k)e”M)



Similarly

8" D¢
3 [
/dr ot ot

= / —(1271:)3 222 <a*(k)a(k) + b*(k)b(k) — a(—k)b(k)e 2" — g* (k)b*(—k)e+2iwt>

m /d3r¢q§

= / —2?271:)3 ;;2 < *(k)a(k) + b*(k)b(k) + a(—k)b(k)e ™" + a*(k)b*(—k)e+2iwt)

using w? = k2 +m?

H:/d3r7-[

(c)

Q=i [ e (o-05") = [ 525 al* ~[o0o)]

This conserved quantity does not depend on time. It corresponds to conservation of matter
in the entire space.

Example 2.5

After the rotational transform

o cosf) —sinf o
<¢y> - (sin@ cos f ) (gby)



Lagrangian density becomes
L— %a [(cos 00,0, — sin 09,¢,)° + (sin 08,6, + cos eatgbyﬂ
_ %F [(cos 00,6, — sin00.¢,)" + (sin 0.6, + cos eaz(py)Q]
o7 +6,%] - 3F[ (00007 + (0:0)]

which is invariant.
The corresponding Noether density and current are

oL oL oL oL
0y + —00, J, = =00, + ————=0¢,
’= 56,07 94,0 50.00"" " 5(0.0,)"
= obu(-6) + 44060 = ~F[2:0n(00) + 020400
= O'(Cbxqu - ¢y¢x> = _F(¢$az¢y o ¢y8z¢x)
0.J,+0p=0

The total charge

Q= [t

is conserved. In this case rotational symmetry in the z,y plane corresponds to conservation
of z-component of angular momentum.

Example 2.6

The angular momentum of a real scalar field, satisfying Klein-Gordon equation, equipped
with metric gop = Map

1 .
Ji = §5ijk<]]k

1 .
%k/d?’ (xJTOk ka()J)
/d3r %kx]TOk
oL

d3 ; ( ak _ Okﬁ)
r&;pa’ 2(000) o—g

/
/d3r 5”ka 8%8’% gOkﬁ)
/

d’r ¢° g 5jka:'j 0,9 0,0



= —/d3r d(r x Vo),
In Fourier space,

r X V(b = € Elmnxman(b

; 3
_ an d k —ikyxH * +ikyxH
= €[ Emn 2(27T)3w aTme — a4 Ipe

d?k 0 , 0 :
— o kn =ikt * +ikyxt
el / 2(2m)3w (a Ok, ‘ T Ok, ‘

3
_ / 2<‘i_kk « (a7 09 4 grg 09t

2m)3w

d’k —iky ot v (k) +ikyat (k) *
= Wk X (6 L VA +e A VA7) >

Where we have integrated by arts and used the noncurl property of k. Angular momentum
can thus be expressed as

Ji
1 dr &3k’ &3k N —ik! P % 1N\ Aik! zt —ikyzt v (k) +ikyxt xr (k) *
[ oS e — (el e Wl + e 9 (i)

4 s [l )t o e

. / %k x |~ () V¥a(k) + a(k)V¥a* (k)|

S 2/% a*(k)k x V®q(k)

Where we have dropped the time-dependent parts for this conserved current and integrated
by parts in the last step.

Example 2.7

1 1 1 1 1 1
L= 3 10" 1 + §5u¢23”¢2 - §M11¢f — Misd1¢o — Moo — 11\11@511l - 51\12(/5%?153 - ZA22¢3

()

In natural units, M;; and M, have units [M]?, and A is dimensionless.



2.7

(b)
The Hamiltonian density of the system is given by
H= 7T1¢.1 +7T2¢.2 - L

oL - oL .
— 8751¢1 + (‘9752¢2 - L
= Qb.lgb'l + ¢52¢52 - L
1/.2 -2 9 2
— §<¢1 + ¢y + (V) ) + (Vo)™ + V (1, d2)

Energy bounded from below requires nonnegative dominant term in

1 b1 L, o ol
Vg1, ¢2) = Z §(¢1>¢2)¢Mij (¢2) + Z(¢17¢2)i/\ij <¢%>

ij j
when independent real fields ¢, ¢y are large. If det(A) # 0, the fourth power terms are
dominant, and

A1y + 20120705 + Mgy > 0

A11¢2 A22¢2
— A11,A22>0 ; A12>—< 2¢%1+ 2¢%2

1 A
A12 > —5 (AHCL + ﬁ)

a

where a is a positive parameter. The right hand side takes minimum value when

The condition for lower bound of energy

1
Ajg > 5 (\/A22A11 + \/A22A11> = —V A1 Agy; Ai1,Ngg >0

However, if det(A) = 0, M;; becomes dominant in a certain combination of ¢y, g2, we must
also require M be a positive definite matrix, which gives

det(M) = My My — M7, >0  tr(M) = My + My >0



2.8

(c)

For this symmetry in the Hamiltonian to be spontaneously broken, at (¢i,¢s) =

V(¢1, ¢2) is an unstable critical point. Near (¢1, ¢2) = (0,0)

oV
90, Z [Mijcbj + ¢iAij¢32']
m = Mij + 0(925 )

The condition for unstability is either
M1 or Myy < 0O

or the Hessian is less than zero
My Myy — M7, < 0

Example 2.8
s— [aiz|Ls POt — 1A¢4
2 4
Under dilation transformation ¢(x) — a¢(ax)

a
S — /d%’ [%a28u¢(ax')6“¢(ax/) — }la4)\¢4(aa:/)]

let z = a1’ S — / (if [%oﬂ g?g)) g(?g)) - 20/1)@4(1')]

S = / d*x Eama% - }lw‘] =S

Therefore the action is invariant under this transform.
The transformation when ¢ is small is

¢ = ag(ax)
= (1+¢)¢[(1+¢e)z]

leading to

0,6 = (1+€)8,6[(1 + €)x]
= (14 €)0u(¢p + 270,0)
= (1+¢)(0u¢ + €0, + £270,0,0)

= 0,0 + 220,06 + £270,0,6

(07 0)7

10
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2.8

Writing the change in Lagrangian as

~ o oL 0¢p oL L, 0(0,0)
£(<Z>,8u¢)—L+ea—¢ l:l"u@—i‘(lﬁ} +€8<a'u¢) |:l' a;’j +28‘u¢}
L($,0,0) = L+ 6{8“a(g£¢) [2¥0,6 + ¢] + 8((2/:(;5) (270,00 + 20,0] }

1 1

L($,0,0) = L+ ea#{ or

20,9) (2”0, ¢ + ¢]}

Evaluating the first line yields
£(3,0,8) = L+ ={ 062" 0,0,0 + 20,0] — 26* ["0,6 + 0] }

L(},0,0) = L+ 5{:6” (0"60,0,0 — \$*0,0) + O, (%aﬂmqﬁ — iw) }

L(},0,0) = L + €0,

1 1
" (58%8@ — ZA&)

L(},0,0) = L+ €0, (z"L)

Equating with the last line

€0, x"L] — 5(3“{ 5

Allowing us to write a conserved current

JH = 0" (a 0,0 + ¢) — 'L

11



Example Sheet 3

Example 3.1
(a)

If the same interaction acts between all pairs of spins, the Ising model Hamiltonian becomes

J
H= E;SiSj—MXi:SiB

_ % [N2 (s)? — N] — uBN (s)

(2 n) 492

where % is the interaction coefficient which is inversely proportional to N. The overall energy

is thus proportional to N.

(b)
Given the Hamiltonian

J
H = —N Z Sisj
2v]

The sum runs over all combinations of (i # j), so we eliminate permutations of the same
pair by a factor of % and subtract the case of i = j

J
:_W ZSZ'S]'—ZSZ‘SJ‘
iJ 1=J
A S P o
2N % Z J ’ %

2

J

i

(c)

The number of permutations that achieve the same magnetisation per spin

:Zisi _NJF—N,

N N

m

12



3 3.1

is equal to the number of combinations that have the numbers of positive and negative spins
2Ny = N+ mN and 2N_ = N —mN
N!
- N,IN_!
_ (V)
(=5 (F=)!
N!
S+ m V5= m) V]

W(m)

(d)
The partition function is by definition
7 — e~ BH{si})
{si}

where {s;} is the set of microscopically distinguishable configurations. Using the fact that the
Hamiltonian is uniquely determined by m, the sum can be partitioned into macroscopically
distinguishable configurations which have different values of m

7 — Z Z e~ PH(m)
m (s)=m
7 = Z W (m)e PHm)

Using Stirling’s approximation In(n!) ~ nlnn — n, we find

In(W(m))

SNN = 1)~ [ 20+ m)N lm (%(1 + m)N) - 1]
—i—l(l —m)N [ln (%(1 - m)N) — 1]

2
In l(1—i—m)N ——(1—m)|ln 1(1—m)N
2 2

= N{ln2 - %[(1 +m)In(1+m) + (1= m)in(1 - m)] }

DO | —

1
=N |InN — (1 +m)

The term in the partition function has
In <W(m)e’5H(m)>

13



3 3.1

:%(m%\[? —N) - N{ln2+%[(1 +m)In(14+m) + (1 —m)In(1 — m)}}
- — % + g{ﬁe}nfﬂ —(1+m)n(l+m)— (1 —m)ln(l —m) —21112}

The sharpness of the peak grows roughly as N. The natural log is a monotonic function, so
the value of m which maximises

—BF = BJm* — (1 +m)In(1 +m) — (1 — m)In(1 — m)

also maximises the term in the sum.

NF
Z%exp( )QN

" 2%kpgT

B0  -F oo F

AN, .

high temperature low temperature

(e)

The maximum value of —F' is found at

dF

/{ZBT 1+m kBT 1
m=5 n(l —m) 7 tanh™" (m)

m = tanh J_m
N kgT

At higher temperatures, there is no nonzero solution for m in [—1, +1], whereas at lower tem-
peratures such solutions may exist, indicating a phase transition. The critical temperature
T, is the temperature lower than which symmetry is spontaneously broken at m = 0, i.e.

d?F d 1—m
=———=—2 T1
0 dm?2 dm Jm—i—kB H(1+m>
1 1
=2 kT | — —
0 J ¥ ks ( 1—m 1+m)

14



0=2J — 2ksT.
J

T,= -~
kb

The sign of F”(myg) is positive, such that the statistical weight times the Boltzmann factor
Is a maximum.

(f)

For m — 0,
F

:—Jm2+%[(1+m)lﬂ(1+m)+(1_m)ln(l_m”

1 2 3 4 2 3 4
z—hf+—O+m%m—ﬁﬁﬂl—%>+u—m%4mﬂl—ﬁi_ﬁ>

3 2 3 2 3 4
4 2 4

=—Jm? + kpT —mQ—m?+2m2+%

1 kBT
=(kgT — J)m* + = ——m*

2 3

so we have 1 kT
F(T) = a(T)m? + i%m‘l

where a = kgT' — J and 3 = %

(8)

Upon introduction of a magnetic field, the statistical weight of each distinguishable spin
configuration is unchanged, and the Boltzmann factor is multiplied by

e,BuBNm

which takes the free energy to be minimised, F, to
F =2uBm+ Jm® + kgT[(1+m)In(1 4+ m)+ (1 —m)In(1 —m)]

which is extremised at

dF 1
dm 1—m
B
m:tanh<%>

15



3 3.2

It is observed that at higher temperatures, a positive value of B gives a unque positive
solution of magnetisation and vice versa. At lower temperatures, another local maximum of
m may be obtained.

Example 3.2

The Landau free energy expansion for a uniaxial ferromagnet in a uniform magnetic field

b
F:Fo—hm+gm2+1m4

(a)

This expansion has odd and even parts in m. The effective Hamiltonian of the system
under no external field has translational symmetry in x space and rotational symmetry in m
space, giving rise to the part of free energy even in m. The odd part —hm results from the
interaction between external field and magnetisation. At temperatures T' > T, we expect no
spontaneously broken symmetry, which gives a(T > T,) > 0. At temperatures lower than T,
we expect a phase transition which gives a < 0. Additionally, for a free energy bound from
below, b > 0 at all temperatures.

(b)

0 is the reciprocal of the exponent of the power law dependence of m on h at the critical
temperature T' = T,. It can be calculated by minimising the free energy at a =0

dF

dm

1
h\?3 1
mz(E) x hs

=—h+bm®=0

giving 6 = 3.

(c)

At h =0, if t > 0, we simply have m = 0. However if t < 0, the solution for m satisfies

— =am+bm® =0
dm
m2:—% (h=0, t <0)

Near the critical temperature, we can expand the coefficients about ¢t =0

04 T.a'(T)t b
+ L“()Wﬂ + -m* + O(tm*)

F = Fy(T) — hm ; 1

16



F
ar _ —h +T.d' (T)tm +bm* =0
dm

—1+ (a/(T)T. + 3bm?)x = 0
1

X W(DNT, + 3bm?

Using m? evaluated earlier
1 _ 1
X(t) _ ) d(MTt=3a —  2a/(T)Tct t<0
1

a/(T)Tct t > O

Therefore
x(t) 2d'(T,)T.(—1)

= lim =2
t—0 x(—t t—0 a(T,)Tt

(d)

In the presence of a term “7-, the system is now no longer symmetric under rotation m —

—m. The new free energy has nonzero equilibrium values of m

d b
F:F0+gm2+§m3+zm4
dF
— =am +dm*+bm® =0
dm
—d + v d? — 4ab
m =0 or
2b
Ordering transition occurs when m = 0 changes from a stable to an unstable equilibrium,
ie. g% flips sign.
0

2

F
iz = a + 2dm + 3bm?
m

d?F
amz| ~ U =0
0

So similar to the previous case, critical temperature is characterised by a(7.) = 0. However,
at a = 0, the only possible stable solution of m

—d—Vd

2m

d
b
is nonzero. The transition of the order parameter m is discontinous (first order).

17



Example 3.3

ot = [ |alol + 3lol" + clonoi® + |02 ao

(a)

The condition ¢ > 0 ensures spatiall uniform solution of ¢ is the lowest energy state, which
allows us to rewrite the free energy as

F=ago+ 5(6°0)

Treating ¢ and its c.c. as two independent fields, the free energy is minimised at

OF

S = a0+ 670 =0

oF

G = a0+ 0700 =0
¢*(a+¢"¢) =0
¢la+¢*¢) =0

»p=0 or —a(T)e?
¢"=0 or —a(T)e ™

where the nonzero solutions exists only for a(7') < 0 and § can be any real number. By
looking at

0’F
060" |

=a+20"¢ =a(T)

We see that at critical temperature a(7,.) = 0, second order phase transition of ¢ occurs
continuously, and phase symmetry of ¢ is spontaneously broken. Close to the critical tem-

perature, we have
T-T,

a(T) =0+« 4+ =at + O(t?)

Therefore in the ordered phase .
o(t) = at|e?
(b)

Add in interaction term with the real magnetic field B,

P -n(25%) vavo s S0y

18



For a given general complex ¢, making the substitution

RED

°7 g

always finds a lower free energy, therefore in this part it is sufficient to consider real field ¢,
ie.
dF
— =—-B+2 2¢° =0
10 + 2a¢ + 2¢
2¢(a+¢") =B
2ax + 6¢°x = B
{unordered phase, p? =0 x =2
B

ordered phase, ¢> = —a x = -5

(c)

Allow ¢ to be negative. Assume ¢ to take the from ¢oe'**+9) we get
0,0 = ko
970 = k¢

BH:/fdx:/[a¢§+%¢é+ck2¢§+k4¢§ dz

Minimisation of SH therefore minimises f(¢o, k), which occurs at

L gy + 268 + 20k + 2Ky — 0
do

(¢5 +a+ck®>+k*)do=0

% = 2ckeg + 4k°¢5 = 0

(c+2K*) kg =0

Equilibrium solutions include

(90, k =0 — f=0
k:i\/—_g,%:o — f= )
k=+y=5¢0=1/-a+45 = fz—%(—a—k%)
[k=0,00 = V~a = f=-%

19



3.3

Nonzero solutions of ¢ or k exist only if the coefficients allow real solution, which means

(¢>0,a>0 = f(0,0)=0
c>0,a<0 = f\/—a,0)2—§
C2 _ C

2

c<0a<g = f

c<0a<0 = f

\

where the last two cases can be considered as one phase. ¢ dependence is not present because
the free energy has a global phase symmetry, which is spontaneously broken by the arbitrarily

phased state.

(d)

Using the categories given in (c)

c
k=0 o =0
%=
> a
k==+,/-%
Po = —CH-%
—a+5 =0

Near the tricritical point in the ordered phase k = +,/—5,¢9 = 1/ —a + %:

If ¢ = a, we get
However if a = 0,¢ < 0

The criticall exponents are not the same along these two directions in the a-c plane.

20



Example 3.4

E==> (si-s))’

ij

(a)

The nematic energy is symmetric under transfrom s; — s;, and thus does not distinguish
between alignment and antialignment of molecules. The statistical weight of different values
of vector m = % > . si is sharply peaked at m = 0, so m is not a good order parameter.

(b)
Define 1
Sa5 = N Z (35ia3i5 - 5a5>

%

Its trace can be calculated as

=2 %(35?04 5aa)
= %(SSz *S; — 3)

(c)
Landau free energy expansion

f=aTr(S-8)+bTr(S-S-8)+cTr(S-5-5-9)

applying mean-field theory
Saﬁ = Q(Snang — 5a5)

we have (summed over repeated indices)

Tr(S - S) = Q? (QnQanBna — 2003305M0 + 5a555a)
Tr(S-S)=Q*(9—6+3)
Tr(S - S) = 6Q*
Tr(S-S.9)=@° (9noén7 — 6nan., + 5047) (3n7na — 57&)
Tr(S-S5-85)=Q*9—-3+3-23)

21



Tr(S-S-S) =6Q*
Te(S-S-5+8) = Q" (3nany + day) (3nany + 6ay)
Tr(S-S-5-8)=Q"9+6+3)
Tr(S-S-5-85)=18Q*

substituting into f
f= 6(0LQ2 +bQ3 + 30@4)

The factor of 6 can be discarded for simplicity. Extrema can be found as

0

% = (2a + 3bQ + 12¢Q*)Q = 0
O%f
TCBQ = 2CL + GbQ -+ 36CQ2

= 2a 4 3bQ + 12cQ* + 3bQ + 24cQ?

0
Q= —3b4++/962—96ac

24c

Given that a,c > 0, disordered phase Q = 0 is always (albeit very narrow) metastable, if not
the global mimnimum.

b=20

. .
~

b most negative

Negative () solutions can be abandonned for b < 0. Ordering transition occurs when
f(FRADEE=00cy < (), which is equivalent to the condition that

Q*(a+bQ +3cQ%) =0
has a nonzero real solution, i.e.
b* —12ac >0 = b < —V12ac

At this value of b, the nonzero solution which is real minimum is

a
= Vae
i.e. the transition is first order, or discontinuous.

22



3 3.4

(d)

Above the transition b < —+/12ac, the liquid is in disordered phase, ) = 0. Just below the
transition b < —+v/12ac, the liquid is in ordered phase @ = /..

23



Example Sheet 4

Example 4.1

Contour integral exercises

(a)

Let z = €',

T de o 2d6
/0 a+ bsinf /0 2a — ibe? 4 ibe=
—2idz
/C 2az — ibz? + ib
2dz
/C bz% + 2iaz — b

Where C'is the counterclockwise unit circle on the complex plane. The function

2
bz?2 + 2iaz — b

can be decomposed into
2

b(z = z4)(z — 2

atvVa?—0b?
ib

where z4 are singular points.
Zy =
Given a > b
(a—b)? < a*— b

a—+vVa? —b?

b

z_ is the only singularity inside the unit circle. Therefore the contour integral evaluates to

<1

/QW A S
o a+bsind b(z_ — z1)
2
b(z- — z4)
21

2m

V&

= 27

= 2m

24



(b)

* odr 1 [ do

/0 1+x6_§/_mm
1 dz
_§/Cl+z6

Where C' is the counterclockwise infinite semicircle in the upper-half of the complex plane,
and by Jordan’s lemma the integral on the arc vanishes as the radius approaches infinity.
The singularities in the upper-half plane are

i(2n+1)w
2y, =€ 6 forn=20,1,2

I’'Hopital’s rule gives

Example 4.2

The steady-state response of this circuit for each frequency is described by the net impedance
of the circuit

() = (L | ;) 1
Zo  Zp+Zg
wlL+ R
14+ iwRC — w?LC

The temporal susceptibility can be obtained by inverse Fourier transform

% dw iw
Z(t) :/ gZ(w)e !
- /OO dw  (iwL + R)e™’
) 21 14+ iwRC — W2LC

=1 Z res (Z(w)ei”t)

25



For t > 0, C is the upper-half w-complex plane. The singularities of Z(w)e™! are at

iR+ \/AL)C — R?
2L

W+ =

Consider light damping such that the square root is real. Both poles are now in the upper-half
plane, so we have

[ wiL+R ., w_L+R
7(t) = —¢| ———— "+ St 177}
®) Z(LC(M — w_)e * LC(w_ — w+)6
w, L , jw_ L ,
2(t) = —i< iwsy L+ R gt _ iw_L+ R zwt)

~\evirjo—m CVALJC -

for ¢ > 0. There are no poles in the lower-half plane, so Z(t) = 0 for t < 0 as required by
causality. By concolution theorem, when an input voltage I, cos(wt) which is turned on at
t = 0 is supplied

V() = /_ T 2 - )y ar

o0

Vel(t) = (wil —iR)e“+t=) _ (y_L — iR)eiw*(t_t/)] cos(wt') dt’

cm/

Example 4.3

The Green’s function for a quantum-mechanical particle with Hamiltonian H is defined by

(ih% — H) Gr—rit—t)=6@—-1)it—1)

Performing Fourier transform in the temporal domain

Gr—r';z) = /eiz(t_t')/hG(r —r'it—t)dt
(zh% — H) Glr—1';2)=—=2 / MG — ') dt + /eiz(ttl)/hég’(r —r')o(t —t')dt
i V242 |Gr—12)=0r—1)
2m - )=

Similarly, in space domain

n 2 -3 nK? ik-(r—r’) 3
va + 2z |G(r; z) = (2m) — e G(k; z) &’k + zG(r, z)

2m
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4 4.3

21.2
1= —f;:l G(k;z) + 2G(k, 2)
1
Gk 2) = —pp
2m

Transforming back

eXp (r—r )) P

h2 k2

G(r —1';2) 3/ e r=r) G (k; 2) d®k

G(r —1';2)

letting z = E + 7€ where € is small,

3 [exp(ik-(r—1))
Glr—r';z) = (2 3/ o’k
(r=ri2) = (2m) E+ie—LE

om exp(ik - (r — 1/
(27)” /// mexp(ik - (r r))k251n0d9d¢dk

2k — k) (k— k)

22m/ / k? exp (ik|r — r'| cosf)
0dodk
k—k)k—k)

> ksin(klr — 1’|
e | ki

where the k.-axis is aligned to r — r’. The poles are at

V2m(E + ie) V2mE i€
ki =+ - — 4 1+ o=

h

(a)
With E > 0, there are two poles, one just above and another just below the real axis. The
integrand vanishes for the infinite arc on the upper half-plane, for € > 0, k, is above the real
axis,
o2m kg sin(ki|r — 1))

lr—r'|h?  (ky — k)
- \/2mEsin<\/2mE|r—r’|/h>

v — 1| ? 2v2mE
Gr—r';z) = —i%sin(VQmEh — 1| /h>

Gr —1';2) = —i(2n) "
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for € < 0, k_ is above the real axis

sm(\/—|r—r|/h>

a 27r|r— 1’| h?

The difference in the limits AG = G—g+ — G—o- can be expressed as

. 2m .
AG = —QWZmSIH( 2mE‘r — I'/‘ /h)
. .m
}1_1}17:1, AG = —QWZW 2mE

(b)

With F < 0, the two poles are nearly along the imaginary axis. An infinitesimal € has no

effect on which one is in which plane. It is always k, = +i¥—"= _2mE which is in the upper
half-plane.

G(I‘—r’;z) mSlﬂh(\/ }I‘—I“/h)
Therefore

AG = —2#22—s1n<\/—‘r — 1| /h)

2|I‘ _ I./| ﬁ2

The number of states in a sphere of radius k in phase space is

_ |4 4_7Tk3
(2m)3 3
Usingj}?:h;—:;2 = k=+V2mE/h

dN
E)= —
PE) =15

AN dk

-~ dk dE

Vv 4 2mE /2m
= T
(2m)3 h? 2m/E
V mv2mE

22 B3
= vV - lim AG
— 271 r—r!

For a system with Hamiltonian H, energy eigenvalues F,,, and corresponding eigenfunc-
tions ¢, (r), using the earlier expression which is independent of the dispersion relation

(z— H)G(r —1';2) = 8*(r — 1)
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/d?’r(b:‘L(r)(z—H)G(r—r';z) :/dg’r(b;(r)é?’(r—r’)

Hermitian H = /d3r G(r —1';2)(z — E,)dn(r) = ¢n(r))

[ Y sumona) Gl —v'z) = 30 2R

:53(:.21.//)
vy N Oa(r) e ()
G(r r,z)—gn —
Given
1 1 .
lim = — Fimd(x)

the Dirac delta can be expressed, using a small €

1 1 1
)E—-E —
( n) = QZW(E—En—iE E—En—l—ie)

= Z%(r)gﬁ (r)
Zezsn (B — En)

1 1
Z¢n Jou(r QZW(E—En—iE_E—En+iE)

Pn(1)0n(r)  On(r)d;(r)
plri ) = QZWZ(E En—ie_E—En+ie)

p(r; E) = % [Go-(r,1; E) — Go+ (r,1; E)]

! -AG(r,r, F)

— 4T

p(r; ) =

Example 4.4

Start with the definition of linear susceptibility «/(t)

/ F(ta(t —1)

By convolution theorem
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Causality demands that a(t) = 0 for ¢ < 0. We can therefore write

dw’

a(t) = O(t)u(t) — a(w) = /@(u},)v(w _ w/)%

The Fourier transform of the Heaviside step function is

O(w) = / le™ dt
0
= lim le™t=<t q¢

Substituting into a(w) = o/ (w) + ia”(w) where o’ and o are the real and imaginary parts.
: d’
a(w) = / (é + 7r5(w)>v(w — ) 2:?
' dw’ 1
a(w) = / ! v(w— W) ;; +3 /(5(w)v(w — ') dw
dw" 1

aw) = [ Zofw-w)

/
o T 2v(w)
()
Assume v(t) is antisymmetric, so that v(w) is purely imaginary

do' 1

a(w) = /év(w —w) 5 T §v(w’)

a(w) = — / 20 (W) duw’ +ia"(w)

w—w 2w

= [ 2

w—w 27

(b)

Assume v(t) is symmetric, so that v(w) is purely real

aw) = / ﬁv(w - w')(;o;/ 4 %v(w’)
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o) = [ TS S )

w—w 27
20/ (W) dw’

" o
@ (w)/w—w’ 27

The equation of motion for a damped harmonic oscillator has the form

i+ i+ whz = f(t)

—w?z(w) + iwyr(w) + wiz(w

z(w) = G(w)f(w)

1
Glw) = (W — w?) + z'.w”y
Glw) = wi — w? —iwy

(W — w?)? w22
The Kramers-Kronig relations state

26 (o) dw!

6'w) = [T 1)

w—uw' 2w

w —w 27

) — / 26" () dw! )

31



	
	
	
	
	
	
	
	
	
	

	
	
	
	
	

	
	
	
	
	


