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Topic 1 Quantum dynamics

Problem 1.1 Hamilton’s equations

Prove that Hamilton’s equations hold for time dependence of & and p in the Hamiltonian

H=T(p)+ V()

The Heisenberg equation of motion is

& =7l



1 QUANTUM DYNAMICS 1.2 Ladder operators in a time-independent Hamiltonian

For momentum

Similarly, for displacement

dié  dT. . .

E:ﬁdﬁ[p’m]
VA
e

Problem 1.2 Ladder operators in a time-independent Hamiltonian

Prove that in Heisenberg picture,

Given

and [a,aT] =1.

Rewrite the Hamiltonian as

Heisenberg equation of motion gives

da )

T ﬁ[H, al

da 1

- _ T

a [“ ’a}“
% = —wa

dt

Similarly,



1 QUANTUM DYNAMICS 1.3

Problem 1.3

The general solution of the SHO subject to time dependent force

1
H = p + §mw2x2 — F(t)x

is
. t
) -
dt/ F t/ ezwt
Vi Zme/o ®)

The displacement and momentum operators can be reconstructed by

T V 27’2w<a+aT>

h —iwt t Fiwt /t , F(t) sin(wt — wt’)
Y (a(())e +a'(0)e ) + i dt - -

mwh
— T_
5
t
p =i/ m;uh (aT(O)eHWt - a(O)e_i“’t> + / dt’' F(t') cos(wt — wt')
0

The integrands correspond to Green’s functions of the classical solution of a forced oscillator.

a=e“a=al0)+

xr =

Problem 1.4 Coherent state

Let |a) = ce® |0), prove that |a) is a coherent state and find the real normalisation constant
c.

ala) = cae®® |0)

- c(eaa*a + [a,eaa*]) 10)

deaaT
_ i
= ¢ |a.af] 10
1

=ala)

Therefore |a) is indeed an eigenvalue of the annihilation operator. The normalisation constant
can be found by explicitly expanding the exponential of an operator

1= {(a|a)



1 QUANTUM DYNAMICS 1.5

a*a aaT
L=c*(0]e |0>

1 TJ
2,7=0
|
(0] j—14)
Z;) lel — i)
a*’
1=¢2 ~0ij
T T
2
1=¢ eXp<|oz|>

Problem 1.5

a(t)|a) = e ™a|a)
a(t) |a) = e ™ <a(0) \/_/ dt' F(t “t) |ar)

/th M’) |av)

UlaU |a) = e™™! <a

let
o =a+ / dt' F(t')e™"
we have
aU |a) = e ™“'a/U |a)
Therefore
Ula) = eid’(t)o/>
o(t) = —wt

This does not agree with the question in the handout.



1 QUANTUM DYNAMICS 1.6 Transitional probability

Problem 1.6 Transitional probability

Starting from the ground state |0) at ¢ = 0, after some time, we are in the coherent state
|a), where

. t
1 . ’
dt,F t/ ezw(t —t)
\/2mhw/o ®)

From problem 1.4, we know that

al? aal)?!
(o) = <m\exp<—%> >

)

_ laf* a o
<m|04> = exXp <_T ; ﬁ(szm
| |2m

2 «
Posm = |(mla)[* = = —exp(—laf’)

For m = 1, this can be expanded to
PO_)l = |Oz|2 -+ 0(0[4)
For m > 1, the expansion is
Py = 0(054)
Compare this with first order time-dependent perturbation theory states, for m # 0
) 2
1

t
PO—)m _ _%/0 dt/ ei(wmfwo)t’ <m| V(t/) |0>

t
Py = z/ dt’ e@m=w0)t’ (|
0

t
. -
Py =i / dt’ e™!
0

Posm = e
which we can see is consistent with the expansion above up to third order in the perturbing
force.

Problem 1.7 Uniform precession of spin

Find the explicit form of U(t,t') and R(t,t') when H = H,z, corresponding to uniform
precession about the z-axis.



1 QUANTUM DYNAMICS 1.8 Avoided transition

Representation by U,

U(t,t) = exp(—%HzSz<t = f’))

i(t—t')H,
AR
vt #) = ! i(t—t')H
0 exp(—i—Z o Z>
Using representation by R,
0 10
Eiszz: -1 0 0 H,
0 00/
ij
11 1 i
AT 7
Eisz = 75 75 +ZHZ % 75
1 0 1
H,
R(t,t) = exp <_€ijz7(t - t'))
11 in(t—t’)> 1
L (FE ) el | ¢ v
Rt.U)= 7% & exp<_sz(;;t>) L =
1 ! 1
cos (H (';;t/) — sin ( Hz(f;t/) >
R(t,t') = sin(Hz(;_t/) cos(—Hz(z_tl)>
1

Problem 1.8 Avoided transition

Expanding the time-ordered unitary operator matrix element to first order, and approximat-

ing \/(8t)? + A2 — |Bt] + 22, if the system started in ||} at ¢ = —oo,

2|Bt)”
i i
cr(t = 400) = —5 [ exp ﬁﬂt Adt
_ i [
o\l ip
TA?
‘CT(t = +OO)|2 = ﬁ



1 QUANTUM DYNAMICS 1.9 Avoided transition via contour integral

. t . t ;
I 1 1 34! _1 _Rt'dY | = i 2
VN—exp<h/O Bt dt>Aexp< h/o bt dt) GXp(hﬁt>A

is the relevant matrix element in interaction picture.

where

Problem 1.9 Avoided transition via contour integral

Counsider the Hamiltonian

H:%+V@:<giﬁ+<%_%g

The instantaneous ergenvalues and eigenstates can be computed explicitly

H |it> = Ei(t) |it>
Ey = £/A% + (Bt)?

Bt
1 1+ =
+) = — =
So we have

i =2\ (&)

By
. . BA
(—l |+ = (] )-) = 2=
+
Let
, i T 3m
Bt + 1A = ae —§<¢<7;aER
ft — i = be® —g<0<3§;beR

and define an exotic branch cut of the £ :
1
B = (00 + o8 = Ve 5ilo+0)
such that on the real axis of ¢

t>0 E+:\/%exp{%i(¢—¢)}:@>o



1 QUANTUM DYNAMICS 1.9 Avoided transition via contour integral

1
t<0 E+:\/abexp[§i(¢+27r—gb)} =—Vab<0
i.e. the instantaneous ground state at t = —oo is the instantaneous excited state at t = oo

Notice that for Im(f8t) < —A, E, is analytic from 6, ¢ — 37”— to , ¢ — —5+ and vice versa,
because there are two overlapping branch cuts. Quoting eq. (1.62) on the handout,

ihBA
zhg C+ _ E. (1) gfg cy (1)
dt ;’ig? E_(t)] \c_

In this branch cut, the instantaneous eigenenergy is nonanalytic at ¢ = 0 on the real axis.
Equation (1) can be solved arbitrarily faraway from ¢ € R, such that |Ey| > A = the
off-diagonal terms vanish, and adiabatic theorem can be used to write

1
i) = esl-oo)esp | - [ B @)
ih Jp
along some path P faraway from the real axis on the complex plane of ¢. Using residue
theorem, the path can be shifted back to the real axis, circumventing neatly around the

branch cut —ifft € [-A, Al.

Im(t)

-

|

Re(t)

Figure 1: The path P along which eq. (2) is integrated, where green dashes indicate branch
cut.

The real part in the integral in the exponent eq. (2) diverges, so information about phase
is lost. The imaginary part arises from the section of P contouring the branch cut, which is

/0% \/mexp[%(ng%ﬁ)](idt)Jr/;\/mexp[%(g—gﬂ(idt)
[ [ 2] - [ o=@

10



1 QUANTUM DYNAMICS 1.10 Berry potential

sl [ £

Finally, we conclude that

P(ground — excited)

= |{c4( +oo)‘exp{ 1}1/ E_(t) dt] i (400))

Problem 1.10 Berry potential

The Berry potential
A (H)=—i(H,+| (Vu [H,+))

can be alternatively expressed as
A (H) = —iVa((H,+H,+)) +i(Va (H,+|) [H,+)

Using normalised states guarantees (H, +|H, +) = const., so that the Berry potential can be
written in a symmetrised form

A (H) = %[i(VH (H,+[) [H, +) — i (H, +| (Vu |H,+>)}
= %[—2 H,+| (Va |[H,+)) + C.c.]

which is thence real.

Problem 1.11

For the Hamiltonian

H- Hy ( cos«? sin@e‘i‘b)

sinfe’®  —cosd

the eigenvalues are

(Hj(?J/Z)z — cos?(0) — sin?(A) = 0

11



1 QUANTUM DYNAMICS

1.11

Hy
the lower eigenstate is then
H ) — sin(6/2) e/
P\ cos(0/2) €l
From definition of the Berry potential

A_(H)=—i(H,—|(Va|H,-))

) 4 sin e~i0/2
e, ety ()

= —j(sin cos L COS(H/Q)é - Z18’111(9/2) sii (Aﬁ
=i (s (6/2), (0/2)) 5T, <_Sin(9/2)é +icos(0/2) Sm(,cb>
= _QHOZm [—i sin? (9/2)& + i cos® (9/2)¢A3}

_ cot(0) ,

N 2H0¢

=

12



2 INTRODUCTION TO PATH INTEGRALS

Topic 2 Introduction to path integrals

Problem 2.1 The propagator

{ih% - H] K(r,t|r',t") = ihd(r —v')o(t — t')

t'+e o
/ dt [ih— —H} K(r,t|r',t") = ihd(r — ')

'—e

t'+e t'+e
ihK (v, tr’, t") — / dt HK (v, t)r’,¢') = ihd(r — 1')
t/

t'—e

—€

Kt + e, ') = 3(r — 1) — e%HK(r, ¢l t)
Evidently when e = 0, the propagator reduces to the dirac delta, so that
U(r, 1) = / dr' U(r', ) K (x, ¢, ¢)
Therefore for small €, we can write
/dr’ U(r' K (r,t' +€er’,t') = /dr' U(r',t) [5(1‘ —r') — e%HK(r,t’|r', t')

U(r,t) — E%H\P(r, )

/dr' V(' ¢V K(r, ¢ + €[, 1)

Comparing with

ih%\ll(r,t) = HU(r, ) —= U(r,t+e) — U(r,t) = eg‘lf(r, t) = e.iH\If(r,t)

the equivalent definition of the propagator is obtained

Wir, 4 0) = U(r, 1) — e HU(r, ) = /dr’\ll(r’,t’)K(r,t’ e

Problem 2.2 The heat equation
Verify that the fundamental solution of the heat equation is

r

0(t) ?
Kheat<r7 t\(), O) = W exp —m

13



2 INTRODUCTION TO PATH INTEGRALS 2.3 Associativity of propagator

The fundamental solution can be derived from fourier space

(iw + DE*)K = 1

2 exp iwt — ikr cos(0)
K(r,t0,0) dk dH/ d<b/ dw k? sin (6 ( o DI )
22 exp(iwt)k sin(kr)
K(r, #[0,0) dk iw + Dk?
1
K(r,t0,0) = )2 ;@(t)/ dk exp( DE*t)ksin(kr)
1 1 - 2 ikr —ikr : .
K(r,t|0,0) = ok 4Dt@(t) dk exp(—DFk*t) ( +e > integration by parts

1 1 47r

O(t) r?
K(r,t|0,0) = 4z Dy exp <_4_Dt>

where before the second-to-last line we used

1 1 r?
K(r,t|0,0) = Wﬁ@@) exp _4_1% X

/_Z exp( Dt(k — ﬁ) ) + exp< Dt(k + ﬁ)2) dk

Problem 2.3 Associativity of propagator
Verify that the associative property of propagators
K(r,t|',t') = /dr”K(r,t!r"t”)K(r”,t”\r’,t')

holds for the heat diffusion case.

Let t; =t —t", ty = t" — 1/, integrate the right hand side explicitly for the expression
derived in 2.2.

Ot —1t) (r—r")?\ O@—-1t) (r" —1')?
" . N S
/dr (47 Dty)3/2 eXp( 4Dty | (4w Dty)3/? exp 4Dty

— / dr” o —t) 1 exp ba(r — )2+t (r" —1')?
(47 Dt1)3/2 (47 Dty )3/? ADt,ts

14



2 INTRODUCTION TO PATH INTEGRALS 2.4 Basis change

4 Dt,)372 (4nDty)32 P ADtt

[ ot —1t) r”QSin(H)
= /0 ar / dé / O o DY (dm Dy 2

( tor? — 2|tor + t17' 1" cos(0) + (t + to)r™ + tlr'2>
exp| —

_ / A ot —t) 1 y tgr? = 2(tor + ax’) - A+ (G A+ b)) + 1r”?
(

4Dt ty
4Dt t, /°° 1 1
A2 o — t/ d "
7T2|t21' -+ tlI'/| ( ) 0 " (47TDt1)3/2 (47TDt2)3/2T

< tor? + (t1 + t2)r" + tﬂ’Q) . (2|t21“ + 7511”/|7“”)
exp| — sinh| —————

"

4Dt1t2 4DtllfQ

1 6 t—t/ 00 t 2 t t 12 t 2 20t t i
= ( >/ dT”eXp<— o+ (o + G)r b COSh(—| 2r + tir'fr )

(47TD)2\/t1t2 (tl + tg) 4Dt1t2 4Dt1t2

1 ot —t —r'?
= ( ) \/ 4w Dtty exp (—&>

—0o0

(47TD)2\/t1t2 (tl + t2)3/2 4D<t1 + tz)

_ ot —1t) exp(— r—r'|? >
[47D(t1 + )] ? AD(t + t2)

Recall that t; + to = ¢t — ¢/, the regular form of the propagator can be recovered.

Problem 2.4 Basis change

Show that the propagator in position and momentum representations are related by a change
of basis

rlp) exp(ip . r/h)

") = oy

The change of basis is given by

K(rtle' ') =0t —t') (r| U(t, ') |r)
K{r. ') =0t~ ) (x| [ dplp) (bl U0, ) [ apf[o!) (o'l
Kir. ') = [ [ dpap! (xlp) K (o, tlp' ) (91"

Applying to the case of free propagator, the right hand side is

1 ip'-r—p-r
//dpdp/K(p,ﬂp’,t’)Wexp( (P . P >>

15



2 INTRODUCTION TO PATH INTEGRALS 2.5 Classical action

=0(t — t’)ﬁ // dp dp’ exp (_Z.%t ;_Lt/>5(p ) eXp(z’(p’ : r’h— p- r))
(27r1h)3 /d@ Sine/dﬁb /000 dpp2 exp <—i%t ;_Lt, + il —hr| COSH)
0= ) |, e <_%%> n(P5)

=0(t — t,)(Zfr—;Ti)?’ /OOO dp % exp (_i%t ;ﬁ’) COS(p|r’h_ r|>

_ . 2 mh > pPt—t plr’ — 1
_e(t_t)(%rh)?’i(t—t’) /_oodpexp(—ZQm - )cos( h

27 mh 2mhm ox Z,m\r’—r|2
Crhpit—t)\litt— ) P\ "2n( — )

3/2 , 2
B , m .m|r’ —r|
=t —1) (27rhi(t - t’)) P (Z 2h(t — t'))

which does coincide with K (r, t[r',t').

=0(t —t')

—0(t —t')

Problem 2.5 Classical action

The classical path satisfies the Euler-Lagrange equation
mio(t) + mw?ry(t) = 0
and the boundary conditions
o(ti) = zo(ty) = x¢
into which the general solution of the equation of motion can be substituted

xo(t) = As(t) + Be(t)

ry = Asy + xicy
T — X;C
zo(t) = L 5(t) + aic(t)

where we have denoted ¢(t) = cos[w(t — t;)] and s(t) = sinfw(t — t;)], further ¢; = ¢(tf) and
sy = s(ty)

Ssuo[zo(t)]

16



2 INTRODUCTION TO PATH INTEGRALS 2.6

trm mw?
:/ —5(502 - ZL‘2 dt
L2 2

mw2

- /t 7 (A2 = B2 cosf2u(t — 1)) — 2AB sin[2e(t — )] dt

i

r t
2 2(.2 2 2 f
mw | % — 2z, + x5(C5 — S Trx; — T5C

= ! flfQ e f)2cs—i—2—fz )
4 5% Sy

mw :C?c — 2$fxin + $12(Cfc — S?c) TpT; — x?cf

= CrS —|——<02—52)
2 s% rof Sy Fooo

e TFCF = 2T52iCF + Ty (cfc - s?) — xpx; + xicy

2 Sf

mw
:E [(x? + 22)ey — foxz} =

2sinfw(ty — t;)]

[(xg + %) coslw(ty — ;)] — 2wy

as required.

Problem 2.6

Verify that Ksgo as given by eq (2.35) satisfies

[m% _ H] Ko — ihd(2)5(1) (3)

where
R? 9*  mw?
o ——
2m Ox? 2

Apply the same notational conventions as in Problem 2.5. The short time behaviour is
the same as for the free particle, so we consider only regions where ¢ # 0, such that the right
hand side of eq. (3) is zero.

mw 1 7
Ksno(z, t|x;, t;) = 5irn’ eXp(i_iSSHO)

17



2 INTRODUCTION TO PATH INTEGRALS 2.7 Airy’s equation

0 1| we s _1imw we we wSs

&KSHO = Ks? [—78 s 5% <—§(%2 +a%)c + §29€i9€ - ?(%2 + f?))]

0 [ we  imw?

aKSHO =K _2_8 + 2h82 (—(I'ZQ —+ xQ) + C2ZL‘Z£L')]

B i 0

K g

Oy LSHO 7 ox SHO:|

52 i 02 i 0 2
—K =K|-—=285 ——3S
2 TYSHO 5 Hp2 SHO + (h@x SHO) ]

0 mw

%SSHO = 2—8<2£I]C — 21’1)

9? mwe

57 S50 =

0? 7 mwce 7 mw 2
goatso = K [ﬁ s T (ﬁT(“ - >) ]

0? mw| ¢  mwzic®+x? — 2xxc

5 Ksno = K [Z— ]

0x? h | s h 52

Putting all the above together

8 R 8 mwis?

h— + —— — K

! ot + 2m Ox? 2 SHO

[ 2 . 2,22 2 2,.2
| we mw 9 9 hwic mw*x?c® + x; — 2z;0c mwe
= —2h2—5 — 252 (—xi —x° 4+ cszx) + 7; — 5 52 — 5 KSHO

_mwQ 9 9 9 9 9 mw?z?
= 952 (+xi +a° — 2yx —x°c” —x] + 21‘1'.1'0) — Ksno

: 2 2.2

mw mwx
=27 ) -5 ]KSHO
=0

Indeed Ksyo is a solution of the Schrodinger equation.

Problem 2.7 Airy’s equation

f(z) = /e““f(k) dk = A/exp (g +ikz> dk

Verify that

18



2 INTRODUCTION TO PATH INTEGRALS 2.8 Saddle point method

satisfies Airy’s equation
f'(z) = 2f(2) =0
so long as the integrand vanishes at the endpoints.

This seems very straightforward.

f"(2) — 2f(2) = A/ (—k* — z) exp <? +ik‘z) dk
f"(2) — 2f(2) = z’A/ (ik* + iz) exp ? + zk:z) dk

f"(2) — 2f(2) = iA exp (? - zkz)

boundary

For some finite z, the integrand vanishes on the three wedges drawn in figure 2.3 of the
handout, where Re{ik®} < 0 for large |k|.

Problem 2.8 Saddle point method

The integrand can be written as an exponential
f(ZE) — eNlnac—z

Compute the derivatives of the exponent

d N
a(Nlnx—x):E—l
d? N

The integrand has a saddle point where the first derivative vanishes. FExpanding around
xr = N gives

f(z) ~exp(NIn N — N)exp <_M>

/f(m) de ~ NNe N /000 exp<—%) dz
/f(m) dz ~ NVe ™V /O;exp (—%) dz
/ —1
/f(x) dz ~ NNe ™V W(%) ~ NNe NV2or N for large NV

19



3 SCATTERING THEORY

Topic 3 Scattering theory

Problem 3.1 Elementary potential

The energy eigenvalue equation in 1D for a d-function potential is

By = (—h—28—2 + 95(1‘))¢

2m Ox?

Assuming continuous v and integrating near x = 0,

0+

20
g (0) = v

T 2mox

0—

For x > 0 and x < 0, the solutions are

VomE

k:
h

Consider forward and backward going waves

o ay exp(ikx) + a_ exp(—ikz) x <0
€Tr) =
by exp(ikx) + b_exp(—ikz) x>0
o )ik lat exp(ikz) — a_ exp(—ikz)] <0
ox ik b1 exp(ikx) — b_ exp(—ikz)] >0

kh?
a+—|—a_:b++b_zz (by —b_—ay+a)
2mg

2mg
ar +a_ —b_ ikhz(a++a—)_(_b—_a++a—)
2 2
a_<@—1> —a+—|—lkh b_
mg myg

()

mg ikh?
a—\ _ ikﬁ2—2mga+ + T —mg b\ _
- ikh _mg -
b+ ikﬁQ—mga+ + ikh?—mg b

as required. In this problem, r;;, = rgrr and t r = try because the potential is symmetric

under parity transformation z — —z.

20



3 SCATTERING THEORY 3.2

Problem 3.2

jar|* = la—|* = [b+]” = b-|? = s [* 4 Jo-* = b4 |* + Ja_|?

The modulus of a vector is preserved before and after multiplication by the scattering matrix
S(k). By definition, S(k) is a unitary matrix.

The boxed matrix in problem 3.1 can be explicitly verified to be unitary.

mg ikh? mg —ikh?
itkh2—mg  ikh?—mg —ikh?—mg  —ikh?—mg | _
( ikh? mg ) ( —ikh? mg ) -
itkh2—mg  ikh?—mg —ikh?—mg  —ikh?—mg
1 (mg)? + k*h? mg(—ikh?) + ikh*mg\ (1
(ikh2 + mg)(—ikh? + mg) \ ikk*mg + mg(—ikh?) (mg)* + k*ht N 1

As for the transfer matrix 7'(k), the corresponding property is

by ay
()=o)

(oo =) (&) = (e -2

Problem 3.3 Scattering channels

The eigenvalues of the scattering matrix in Problem 3.1 are

mg & ikh?
Ap = ———
ikh? — mg
: kh? :
Ay =exp| i(m — 2arctan —) A_ = exp(im)
myg

The odd (antisymmetric) wave vanishes at = 0, so its derivative has no discontinuities.
Therefore, the scattered wave is always the incoming wave negated. Thence, the even (sym-

metric) channel corresponds to A\ whereas the odd (antisymmetric) channel corresponds to
A,

T kh? T

5even - T t - 50 = =
5 arctan mg dd B

21



3 SCATTERING THEORY 3.4 Green’s function

sin( kx — arctan kﬁg) >0

weven ({L‘ ) = Ceven

sin| —kxz — arctan khg) r <0

sin(kx) x>0
sin(kz) =<0

2bodd(m) = Codd {

Problem 3.4 Green’s function
Solve the Lippmann-Schwinger equation

U, (z) = exp(ikz) + /dz’ Gr(z, 2"V (2" V(2
for the case of the d-potential, with the causal Green’s function

Gz, 2') = —z% exp (zk‘x - x'|>

For V(2') = go(a'),

/d$' Gr(z, 2"V (2" )W (z") = Gi(z,0)gV4(0)

Uy (z) = exp(ikz) + —= g exp (ik|z|) Wy (0)

ik
ikh?
. m .
Ui (z) = exp(ikx) + m exp (ik|z]) ¥ (0)
() = m;};ﬁﬂg exp(ikx) x>0
. exp(ikz) + g exp(—ikz) @ <0

This is just the result of Problem 3.1 restated

texp(ikz) x>0
Wy(z) = . . :
exp(tkx) 4+ rexp(—ikz) x <0

Problem 3.5 Asymptotic solution

If we try to apply the Hamiltonian on the wavefunction given in eq 3.30,

[0, 9)
r

HU,(r) = —%VQ {exp(ikz) + exp(ikr)]
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3 SCATTERING THEORY 3.6 The sphere potential

Hy(r) _% {—k:Q exp(ik=) + 16, (b)r%(?(ik:r — g)rexp(ik:r) N expiikr) VQf(Q,gb)}
HU(r) = —% {—k‘Q exp(itkz) — Mf(ﬁ, P)k* + Mv%‘(e, gb)]
HU(r) = h;:j Uy (r) — %Mvzf(e, )

there is a residue term, which scales as

1 1

_v2f(97 ¢) = _39((97 ¢)

r r
where ¢ is a function independent of . As r — oo, this term decreases much faster than the
scattered term, eq 3.30 is thus an asymptotic solution.

The “correction” term x
Wy (r) = Wg(r) + x(r)

which solves the energy equation. y satisfies

h2k? h? exp(ikr) h?
HY (v) = Ur) - — 2 - VP
k(r) 2m (r) 2m T Vi 2mv X
R2k? h2k? h? exp(ikr) h?
\\ — )] _ 2 2
2m ( k(r> + X) 2m (r) 2m r Vi 2mv X
k
Py + V2 = ——eXpi‘ ") = S explikr)g(6, o)

If we are free to remove the phase factors on the left and tight hand sides, the leading order
of the taylor expansion of x in r would be —3.

Problem 3.6 The sphere potential

The first Born approximation of the scattering amplitude is

fBom(Q, qb) = — 2:;12 /dr’ exp(—iq . I")V(”r‘/)

In the case of a spherically symmetric potential only nonzero and uniform within radius aq,
the integral is invariant under ¢ — Rq. We set a r’ coordinate system with q as polar
direction,

0= \/(k; — ki) - (ks — k)
qg=k2- 20059)%

ag 2 T
fBom (0, ¢) = — m 5 dr’ / d¢’ / 40’ '* sin ¢’ exp(—iqr’ cos 6) Vo
2rh? J, 0 0
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3 SCATTERING THEORY 3.7 Spherical Bessel functions

fBorn (0, 0) = mVO / dr/ dur” exp(—igr'u)

2 ﬁ2
mVy 4 )
fBorn (0, ¢) = ot g dr' 7’ sm(qr’)
2mVy qag cos(qag) — sin(qao)
fBorn<97 (b) = 72 ° ° Oq3 °

2mVy o= 1 2n
om 0 — 3 2n—2
foorm(0,0) = =5 aonZZO(Qn)!Qn—i-l(qao)

2mVj ad > 3

fBorn(ea ¢) = h2 5 —~ (2n + 1)'(271 + 3)

[k*(2 — 2cos6)]"

The two expressions are the explicit expression and Taylor expansion respectively. The zeroth
term in the infinite series is always 1.

Problem 3.7 Spherical Bessel functions

Show that

satisfy spherical Bessel equation

d?“l d?"l
de 2

Let

The spherical Bessel equation gives a recursive formula for these coefficients.
Zam m—1) +2m — (1 +1)] p™ +Zamp =0

Qo = —am[ (m+1) =11+ 1)}

This specifies the recursive relations of the Laurent series coefficients, as well as the (lower)
terminating index. The odd/even parts are independent, they terminate at either m = [ or
m=—[—1.
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3 SCATTERING THEORY 3.8

For convenience, use Rayleigh’s formula to get Hankel functions

li)lexp(ip)
pdp p

hi(p) = 3i(p) + ima(p) = —z'(—ml(

Expand the above as a power series

- () S

P dp n=0 n=—1-1

. l 1d l (Zp>n
=2 (=) (zd—p> (n+ D)

n=-—1

The power terms and their coefficients satisfy

pdp) (n+2+1 pdp pdp(n+3)!
1d\"! (ip)"
N )2\
()
— 1 (_p)l li ! (Zp)n
n+3 pdp (n+1)!
O(pn1r2l+2

—_ p? )(_p)z(li)l (ip)"

(n+3)(n—20—2 pdp) (n+1)!
2
n+2—-1 P n—l
Bn+2fl,0 - (TL + 3) (n DY + 2) 5nflp
1
n+2—-Il=n = B = B —2

(' +1+1)(n —1)
Boo=—(*+n—1*—1+In—In)B,
Bu—o=—[n(n+1) =11+ 1)]8,

Therefore, the Laurent series of Rayleigh’s formula for Hankel functions satisfy the recursive

relations specified by the spherical Bessel equation. Separating into real and imaginary parts,
Rayleigh’s formulas must solve spherical Bessel’s equation.

Problem 3.8

At small arguments, the dominating term is the lowest order term. From Problem 3.7, the
lowest orders are [ or — — 1, so the lowest order terms are respectively

((1d : (ip)*
=) <;d—p> CES)

Q

Ji
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3 SCATTERING THEORY

Let u = p? so that £ = -

=it

2p

dpi

i~ (—2)! l/2d_l ()%
: dul (21 + 1)
(20 +1)!

P

SR CTI ]

JIRu

pdp

Loryal
o (=12 922 <Z>—u
o (=) ( dudp) 20 + 1)

1d\" (ip)™
‘_) (=14 1)!

dt (i)_lu_l/z
z_'_2ll/2_—:__2ll/2 _
w2 Sy - (Y
1 Lot
ny ~ —(—2)ul/? (—5) (20 — ™2
N (20 — 1!
n~ = Pl
Where the double factorial is defined as
n!l =n(n —2)!!
ol=11=1

Problem 3.9

Mmzﬂew(
= —i(—p)

ol

1d

)leXP_@ﬂ)

p

1" exp(ip) +O(p™")

p

( )H—l exp(ip) + O(p_l)

= (=i

= —7iexp (—z—
~——explt
p (

p

For large arguments, the Hankel function can be approximated

exp(ip) + O(p™")

)=
=)



3 SCATTERING THEORY 3.10 Flux

jilp) = Re [lu(p)] ~ %Sin (p _ _>
ni(p) =Im [hy(p)] = _%COS (p _ lﬂ)

Problem 3.10 Flux

In 3D the probability current of a wavefunction W is

i= - v - wve

2m

Given a general (free) wavefunction

9] l
=37 Yinl0,0) | cinh? (kr) + it hf? (kr)

=0 m=—1

Compute the flux through a large sphere

Flux:%j-da'

Flux = f 25, dQ
. ih dw
Ir = —% (\IJ d_’r‘ — C.C.)
. ih * ou 1 : in 1 : *
jr=—5 | ¥ z_: > Yin(0,9) [clmt (—; + zk:) h + b (—; — zk) hl] —c.c.

1 (1
Yim (0, ) [c;;;;t (—; + zk> i+, (—; - m) h;*] —cc. | A0

__@ ii [Outh + et h*} com —l—l—ik hy + ct —l—ik hi| —c.c
= o - l 1 Im - l Im r ! o

hr?k [ & o 5T o
= om Z Z hl + C hli| [Clm hl — Clmh'l] + c.c.

m

I
hE
M

outl hl hl

Clm’ hlhl + }?n*couthlhl out* m hl h*:| + c.c.
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3 SCATTERING THEORY 3.11 The hard sphere

o
tm r—00 7"2k2

2

:giz[‘_
:miiz [ ot

I also tried to calculate same flux in the following way.

Flux—?(_] -do
/V jdv

= 2m (U V20 — OV2Ur) dV

1
} lim 72k ——

— |Cm

but we know

vt i[;f(@_m
SIS s

S Vit 6) |t i) Ckr) + g, i (hr)

m=—1

d
r —+2r——l(l+1) [Outhl+c h;*]

=0 m=—I dr
Z Z Yzm 2k,2 [outhl+c h;k]
=0 m=—I

= kU

which is kind of not a surprise. Exactly the same calculation follows for ¥*, giving a total lux
through a large sphere to be 0. Again this is no surprise either because all of the components
with which we constructed the wavefunction are free waves. What went wrong? Physically,
the wavefunction is not spanned by free states near » = 0. Mathematically, this probably
corresponds to some unobvious singularity of the laplacian of the spherical Bessel function.
I learnt this the hard way.

Problem 3.11 The hard sphere

(a)

Outside the sphere, the wavefunction is spanned by m = 0 free waves.
Z Y, (0, ¢) [exp(2i8) by (kr) + R (kr)]
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3 SCATTERING THEORY 3.11 The hard sphere

On the surface of the hard sphere r = ag, the boundary condition is ¥ = 0. Since the
different angular momentum channels are orthogonal

exp(2id;) hy(kao) + hj (kag) =0
exp(+id)  ji(kag) — imy(kao
exp(—idy)  gilkag) + ing(kag
L+itan(d;)  ni(kao) 4 iji(kao)
1 —itan(6;)  ny(kao) —iji(kag)

)
)

ji(kao)
tan(d;) = ———~
(%) ny(kag)
(b)
For ¢y, this is
sin(kao)
tan(y;) = ——————
an(%) — cos(kag)
(Sl = —kao
For general [ at kay < 1, quote from problem 3.8
P
o)~ G
(20 — )N )
n(p) = _T
we have
_ (/{:ao)Ql—H
tan(0) ~ = o @ =
o (ka0)2l+1
(20 + D20 — 1)1
(c)
Using
AT &

Oror = 73 D (20 + 1)sin® 5,
=0

At low k, the [ = 0 term dominates. Substitute in results from (b)
4 (kag)?
Otot = _W—( a) 1= 47m(2)
£ [(=01]
where
M=1x(1-2)!' = (=!I =

so the scattering cross-section of a hard sphere is its classical surface area.
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3 SCATTERING THEORY 3.12 scattered phase of spherical potential

Problem 3.12 scattered phase of spherical potential

For the spherical potential in problem 3.6, the wavefunction is spanned by k free waves outside

ap and k' = —”2771()54/0) free waves inside ag. On the inside, the only allowed component is j;
because n; diverges at » = 0. Matching ¥ at the boundary for [ = 0,

exp(2ido) ho(kag) + hi(kag) = tjo(k ao)
exp(ikag +idg) = .exp(—ikay — idp)
—1 +1
k’a[) k’ao

= e "t jo (K ao)

2 . i, sin(K'ap)
]{;_ao sm(k‘ao + 50) =€ Otk/—ao

Similarly, the derivative terms of ¥ are matched

2k 2 _ise . K ag cos(K'ag) — sin(k'ap)
Toag <09kt 00) = 755 sin(kag + bo) = ek (Kao)?

Divide one by the other we get

1 1
k cot(kag + &) — — = k' cot(k'ag) — —
Qo ao
k
tan(kag + dp) = o tan(k:'ao)
k
Jp = arctan {E tan(k'ao)] — kay

Problem 3.13 Low momentum scattered phase

Ry is the solution of the nonhomogeneous spherical Bessel’s equation from the origin up to
some point r outside the interaction region, where it is matched with free waves which is
combined from j; and n;.

Rl(’f’)

exp(2id;)hy(kr) + hy (kr)
Ri(r)=e

xp(2i0)) R (kr) + hy' (kr)

Sub in hl = jl + inl,

exp(—id;) Ry (r) = cos(d;)5; — sin(d;)ny
exp(—id;) Rj(r) = kcos(8;)j; — ksin(d;)n;
v cos(0y) 1 — v sin(d;)ny = kcos(8;)j; — ksin(d;)n;
(Vi = kjp) cos(,) = (ymu — kny) sin(6)
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3 SCATTERING THEORY 3.14 Scattering length

r
tan(dr) = yr(kr) — knj(kr)
where v = %. As k — 0,
’le(kao) - ka,(kao)
tan(d;) =
an(dr) yru(kao) — knj(kag)
e+ aom]orr
1 —
[’yaalfl + a51720(1)} O(k-li—l)
yag+ O(1) 544 20+1
0 — —— 2 k
- ~yag + O(l)ao o )

Note the top and bottom O(1) are not in equal because they come from different cos and sin
series coefficients. An intuitive guess is that they are only the same when [ = (I + 1)!.
Problem 3.14 Scattering length

In Problem 3.12, the scattering length is the scattered phase at small £ divided by —k

k
Jp = arctan {E tan(k:’ao)] — kag

. 1 k
a= ’lcl_rf(l) {ao 7 arctan [ T tan(\/k:2 — 2mVoh—2ao)} }

For finite positive Vj

1
ey —_—— -2
a = aop S tanh(VZmVoh a0> € [0, ap)

For finite negative 1}, however

a = ag —

1
Tz o (V2 )
- 0

because tan diverges for finite 1 to both +oo, the value of a also oscillates to infinities (and
come back from the other side). Using tanu > u for 0 < u < 7, we know a < 0 at small
negative Vj.

Problem 3.15 Reflection probability in Breit-Wigner form

In 1D, a particle which is free everywhere but at x = 0 has wavefunction

{ei’” +re7hT <0

tetk® x>0
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3 SCATTERING THEORY 3.16

1 | e 4 re=ike 4 te=thr 2 < ()
Von = =9 T
2 | te™T 4 7T L ettt ()

The continuity of ¥ at x = 0 means
t=1+4+r

Quote eq (3.93) on the handout or Problem 3.3 on this Problem sheet, it’s easy to get

lim U/ = Fksin(deven)

A)Oi even
x

Substituting into the free waves,

ik
%(1 I T) = QkSin(deven)
_ir = Sin(aeven)
s B tan2(5even)
|7’| = SIn (5even) - 1+ tan2(5even)
(th/th)Q B ’}/2/4

") = G By + R~ G = BuP 4 A

2mit?

where v = S5~

This is said to be in Breit-Wigner form.

Problem 3.16

Consider the 1D Schrodinger equation. It’s Green’s function satisfies

B2 B2
Ep+—V?+i—-c¢
2m

v G(x) = d(x)

where ie¢ is a manually added infinitesimal damping term. The fourier transform under
convention

1 .
G(z) = — [ dge'¥*@
(@) = 5= [ dae™Gta)
satisfies 5 ]
m
Gky=°"2_ -~
(k) h? k% — ¢% + ie

Use residue theorem G(z) can be obtained as

1 o .2 1
G(x):—/ dge'?* mn

21 ) R k?— 2 + e
o] 1qx
I L
mh? J_o k% —q?®+ie
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3 SCATTERING THEORY 3.17 Formal scattering

= %QMZres(qi)
2m {—M x>0
i

K2 _exp(2—kzlm7) <0

= _Zﬂ exp(ik|z|)

Problem 3.17 Formal scattering

Eq. (3.112) on the handout states

47r m
flky k) = ——5— (k| T'|k;)
At 0 = 0 i.e. ky = k;, this evaluates to
47m°m
f(0=0)= T (ki| T |k;)

The total cross-section is

atot—/|f o) a0

4
o = ( 7;;”) k,;|TT/‘kf><kf|dQT|ki>

Because ky is confined by the condition Hy |¥) = Ej | V), and the integral is over a spherical

surface in momentum space, which is only a subspace we write

2
472 1
Otor = ( ”m> (k| T 5 T k)

hQ

where P; is the projector onto state k. It satisfies

1 (P _OE
EPké(ﬁ—k) = - 0(Ho — By)

Formally, the basis-independent Green’s function operator is

1

Gf=——
ko By — Hy +ie

Both sides of eq. (3.113) on the handout are real, so

Im [(ki| Tt |ki>} +Im [(ki\ TG \ki>] )
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3 SCATTERING THEORY 3.18 Quantum point contact

1
- | TF—————T|k;) | = —Im [(k| T |k;
Im {<kZ|T Ek—H0+ieT|k’>] m [(k;| T k)]
h2
7 (ki| T'6(Ey, — Ho)T |k;) = oz [£(6 =0)]
Ok 1 12
(pt 9k 2 N _
m (| T g AT k) = g [£(6 =0)]
R\ mk? h?
”<4ﬂzm> T Ty L0 =0)]
4
Ttot = % Im [f(6 = 0)]

Problem 3.18 Quantum point contact

In their respective semiclassical regimes, the problem of quantum point contact and Landau-
Zener problem are analogous in the following sense.

. 7
U~ ——FEtWU
LE()

Make the following transformations from Problem 1.9

t—x

A = 7mh 27}#
\/ dg
k 2m2n?2
| — = hy | ——
b= 5 &R

The “transition probability” from positive p to negative p corresponds to reflection coefficient
(in my humble opinion, as opposed to }%)

R = exp (_7? 2m2h2nz, | d? )

I /21202 |33 R
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3 SCATTERING THEORY 3.18 Quantum point contact

= eX —7T22 ﬁ
- p n d()

There are 2 quantities called R in this equation but they are not the same thing.
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Topic 4

Problem 4.1

Consider 3 elements a, b, and ¢ labeled 1, 2, and 3. Label exchange operators result in The

1 2 3
a b c
Po— b a c
Py— b ¢ a
P12 —~ ¢ b a

result of PioPs3Pio in last line is just the same as that of Pis.

Similarly if we exchange

the labels 2 <» 3 from above then Py3P5P3 = Pj3. A simultaneous eigenstate of all the

permutation operators thence satisfies

E%E1y = Ei3 = E}yFEo3

where E;; are the eigenvalues. All eigenvalues are therefore equal and £1.

Problem 4.2 Entanglement

For a pair of indistinguishable particles with wavefunction

¥(r1.12) = (01 (1)6a(2) & 0nlrr)on ()]
Pio(r1,12) = %
Pi(ry) = /dr2 Pio(ry,1o)
Pi(r1) = %
Py(ry) = /dr1 Pio(ry,19)

Py(r2) = 3 [6af(r2) £ 2 Re 61 (12)63(22) {Gal60)] + 16 (r2)]

[|¢1\2(r1)|¢2|2(1‘2) + 2Re [¢1(r1) 8] (r2) p2(r2)d3(r1)] + |61 (x2) || (x1)

91[2(r1) £ 2Re [91(r1)03(r1) (64]62)] + |62 (r1)|

If the ¢, 2 are orthogonal it is immediately obvious Py # PP, i.e. information about one
implies information about another. The term in the middle of P is bunching/anti-bunching

for bosons/fermions.
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4 4.3 Half-half beam splitter

Problem 4.3 Half-half beam splitter

A 50 : 50 beam splitter scatters two bosons approaching from opposite sides into a state

(|Left) + |Right))

Sl

2

The probabilities are

Plg(Left, Left) = Plg(R,lght, nght) =
Pm(Left, I'lght) = P12<R1ght, Left) =

S ol

Problem 4.4

(a) the totally antisymmetric state of three fermions

1
Wika) =+ [01(F)0a(82)08(1) + 01(r2)2(x3)00(r0) + 61(15) 62 (1) ()]

- % [61(23)P2(r2)P3(r1) + @1(r1) P2 (r3)P3(r2) + d1(r2) da(r1) ds(rs)]

(b) the totally symmetric state of three fermions

)‘I’igu> = % [201(r1) @1 (x2) P2 (r3) + 201 (r2)d1(r3) P2 (r1) + 201 (r3)d1 (r1)da(r2)]

‘1"1912> S [f1(r1)d1(r2)Pa(rs) + d1(r2) 1 (rs)da(r1) + d1(rs)dr(r)da(rs)]

&

Problem 4.5

There are a total of N! different permutation operators.

2

= ZZ<‘I"P1P2"I’>

P P

> Pl

The indexed terms on the right hand side are one if

PP [0) = |W)
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4 4.6

otherwise they are 0. For every P;, there is only one P, = P; which makes P,P; = I, but for

every P, = Py, there are [ N,! permutations which do not effect the state each particle is
in. Therefore,

2
S P =[N 1=NT[N!
P @ Py «

The normalised totally symmetric state is thence

‘\DS> - HNN 1)

Similar follows for the anti-symmetrising operator.

Problem 4.6

—(N-1)/2
L e (N-1)/
A = ——
Vv N! L(N=1)/2
N
1 1
—(N-1)/2
=—1]z
v/ N 1;[ k L(N-1)
N
Vadermonde —= = Wi H H 2 — %)
! k 1<J
1/2 —1/2
(z12e)"
! k I<k 1<j &

1/2 —-1/2
1)/2 (N k)/2 (k 1)/2 “i N
1;1 Il (z) 2)

1<j
_ ,L)N(N—l)/QHSln<7T($z—x]))
v N! 1<j L

(gi)%l)ﬂ ll_V[jl - <7r(a;iL— xj))

There are a total of N — 574+ 7 —1 = N — 1 terms which involve something in the form
sin(Z% + ¢) for every ;. ) = (=N u) =

“’ﬁ\

J
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4 4.7

|\IIA>. Upon any z; <+ x;, the terms in the denominator are replaced by the terms in the
numerator in the following equation

‘\IIA> . ‘\IIA> sgn(i — j) sin(z; — ;) [T, sgn(i — k) sin(z; — ax) [, sgn(j — k) sin(z; — ;)
sgn(j — i) sin(z; — x;) [T, sgn(i — k) sin(z; — z) [T, sgn(j — k) sin(z; — zy,)
)

where we now work in natural units 7 for simplicity and the :I:sin(a:i — xj) in front of

the fraction are the recounted terms. Therefore the wavefunction is periodic and totally
antisymmetric.

Problem 4.7

(N +1)!
v :
‘ 1. cxN \/H[j NB + 5 S |¢Oé> |¢Oé1 |¢Oé2 |¢OéN>

aN>=,/H S 16a) [6ar) [6az) - [9ax)

- ‘\Ijaalag aN> \ S|¢Oé> oqozg aN> V N + ‘\Ijacuag aN>

Sda) |V

where the idempotency of S was used.

Problem 4.8

VN FTAIG0) [0 ) = VNIALGW) [60) - [bay) = Wik o) = 0 [ e )

If N, > 1 for any «, the wavefunction vanishes. Thence the antisymmetric subspace of
fermions is spanned by

={0,1} Va

The ij-th matrix elements of a, vanishes for any Nj # NJ ie. aq is only nonzero in a-
subspace. In the basis |0) and |1),

a—01:>aaT—OO'aT—IO:>{ aT}—é
o — 0 0 alqgy — 0 1 ; Qo = 0 0 aaaﬁ—aﬁ

— (40, = alal, =0 = {aa,a,g} { a,ag} =0
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4 4.9 Bogoliubov transformation

Problem 4.9 Bogoliubov transformation
H = e(aTa + bTb> + A(aTbJr + ba)

(a) Bosons

If all operators commute except
[a,aT] = [b, bT] =1
Define

a = acosh k — bl sinh x

f =bcoshk —al sinh k
Their commutation relations are

[oz, aT] = [a, aq cosh? k — [bT, aT] sinh k cosh k — [a, b] cosh k sinh k + [bT, b] sinh?

[a, @q = cosh? k — sinh?*k = 1

[6, BT] = [b, bT] cosh? k — [a*, bq sinh k cosh k — [b, a] cosh k sinh k + [aT, a] sinh? k

[57 51 = cosh? k — sinh®k = 1

[, B] = [a, b] cosh? Kk — [bT, b} sinh k cosh k — [a, aT] cosh k sinh k + [bT, a} sinh? k

[, 8] = sinh K cosh k — cosh ksinh kK = 0

[oﬂ, B} = [aT, b] cosh? k — [b, b] sinh x cosh K — [aT, aq cosh x sinh x + [b, a] sinh? &

o]

All the other commutators are trivially derived. « and 3 satisfy the same commutation
relations as a, b. Using

afa = a'a cosh? k — ba sinh k cosh k — a'b' cosh x sinh x + bb' sinh? K
B8 = b'bcosh? k — absinh k cosh k — b'a' cosh k sinh k + aa’ sinh? Kk

ala+ 875 = (Cosh2 K + sinh? Ii) (aTa + bTb) — 2 cosh k sinh /<¢<aTbT + ab)

If we choose

cosh? k + sinh? €

—2coshksinhk A
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4 4.9 Bogoliubov transformation

cosh(2k) €

sinh(2k) A

1 A
Kk = —tanh™! (——)
2 €
the Hamiltonian can be written as

H=¢€/1- (%)2<04TOZ+5T/8>

The energy eigenvalues are therefore

A 2
En, N, =€ 1—(—) (No+Ns) NEeN

€

(b) Fermions

For fermions, the problem is almost exactly analogous if we define

a=acosk — bl sink

f=bcosk+a'sink

The anticommutators are as bilinear as the commutators, and we get

afa+ 618 = (0032 k — sin® k) (aTa + bTb> — 2cos ksin k(aTbT + ba)

k= ltam’1 (—é)
2 €

H=ey/1+ <%>2(oﬁa+5w)

A 2
ENQ,N@ =eq/1+ <—> (Na +N5) N e {0, 1}

€

(c) wunitary transform
A = a'b" — ba is by construction anti-Hermitian, so

U = exp [I{(aTbT — ba)] =
is unitary for real x, and UT = U1 = e="4,

For Bosons,

UaU' = e#ae "4
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4.10 Second quantised operator

=a+ [e“A, a} e A

2!

2
=a+kK [aTbJr — ba, a] efemrA 4 - {a*bT — ba, [aTbJr — ba, a]]e’“‘e‘m + ...

2 3
K K
—a—kb +—a— —b + ...

2 6

= acosh k — bf sinh k

All the terms in the commutator are found by mathematical induction, and similar for S.

For Fermions,

UaUT = e"qe "4

—a+ |:€/QA7ai| e—/-cA

=a-+ kK

=a+ kK

=a+kK

2

afbi — ba, a] eMem A 4 % [cﬁbT — ba, [aTbJr — ba, a]] erle A 4

r 2
a'bla — baa — aa’d" + aba} + % {aTbT — ba, [aTbT — ba, a] } eFle A 4

i 2
—a'a — aaT] b+ 5 [a*bT — ba, [CLTbT — ba, aH eFlemm A 4L

2
—a— kb + % [aTbT — ba, —bT] efemrA 4

2

:a—/st—K—cH—...

2

=qacosk — bl sink

and similar for £.

Problem 4.10 Second quantised operator

~

A

S/A
W) =3 Al
YE

S/A
vl

If @ and B are different, we can expand th sum over € to two terms. Otherwise, there is only
one annihilation operator that produces a nonzero term and the sum has to be halved

il 5/4 1 /A S/A
Wy
h 1
S/A\ —1 |, 5/4 —1 |y, 5/4
AW = e 3 (e 1) At o)
v
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4 4.11

where
1 1 a# one particle in each state
h V2 a=p two particles in the same state
because a,, \II%A> = /Na \Ifg/ A>. The + comes from the eigenvalue of permutation operator.
N—l
Noticing 175 B = Nag,

‘\I/S/A> aﬁZ( v ‘\IJS/A> JrA%B./V’a_Wl / >)
S/A> \/T‘\DS/A> \/WT‘\DS/A> ” ‘\IIS/A> '

Problem 4.11

The operator for the density of spin of a system of spin-1/2 fermions is

S = % Z ¢lass’¢s’

where T (r), ¥(r') satisfy
{0l) v ()} = 8uwd(r = 1)

[Si(r Z Uzss/ajtt’[ 1)y (T )¢Z(r/)¢t'(r/) - wj(r,)¢t' (r/)¢l(r)ws' (r)]

ss’tt’

= = Z Oiss' Ot [ )5ts’5(r —-r )%/( ) 7/12(1'/)551:'5(1' - F/)@Ds' (I‘):|

1 /
= Zé(r —r) Z UzstU]tt/wT ) (x Z Tit's ’Uytt’wt ')ty (1)

stt’ s’ t,t

1 /
= Z(S(I' — T ) Z Uzstajtt/ wt/ Z O—’Lttlo-jSt¢ ¢t’( )

| s:t, St s,tt!
1
= 15(1‘ - r/) Et;, [Uz‘stgjtt' - O-jsto-itt’] 1/)2(1')1/%’(1')
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4 4.11

— _5 (r—r Z2zewk<fkst¢ (r) ¢ (r)

Z%k E Ok t¢
S

[8i(x), 8;(r')] = ieijud(r — 1) Si(r)

(b)
For the free Hamiltonian H

9 iy g

ot h
[Z/dg , r’d)t r’d)t) ( )]

h

= i_mt /Uss’ /d3 ' [( r’l/)t)( I"l/)t)w;rws’ - ¢i¢s/(vr/1/zg)(vr,¢t)
h

- i—mt "/ dr' [ ()0 Vb (r =) Varth (1) = Vartd] ()0 Vi (v = 1) (1)
h

— o S [0 (20 1) — (V20100 o)

where j is the second quantised spin current, generalised from FEq. (4.58) on the handout.
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4 4.12

The color I use when I enter an existential crisis.

Problem 4.12

The totally (anti)symmetric ground states are

N
1
\IIA(rthu"' mzsgn )PH¢k—1(rk)
P k=1
N

S
\IJ rlyrQa"' H¢O rk

N

p(x) = Z o(x — ;)

(PP = [ el 05" (21 D 00x = 1) — 1) W5 ()

,L"j

()l = [ ant 0w D 00e RS e

/drk Hgbo T Zéx—rz x' —r; Hgbo ry)

J#Z

(p(x)p(x)), = b(x — x) {p(x)) +ZH / dry 8(x — 12)0(x' — 1) (1) (1)

#zk

(Px)p(x)) g = 0(x — x') (p(x)) s + Z Po(x (x)¢5(x')

JF

(P(x)p(x)) g = d(x = x) (p(x)) ¢ + {p(x)) (p(x')) + N?¢5(x) do(x) 45 (x) o (x')

Problem 4.13

Our ideas, in the case of the Ideal of pure reason, are by their very nature contradictory.
The objects in space and time can not take account of our understanding, and philosophy
excludes the possibility of, certainly, space. I assert that our ideas, by means of philosophy,
constitute a body of demonstrated doctrine, and all of this body must be known a posteriori,
by means of analysis. It must not be supposed that space is by its very nature contradictory.
Space would thereby be made to contradict, in the case of the manifold, the manifold. As is
proven in the ontological manuals, Aristotle tells us that, in accordance with the principles of
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4 4.13

the discipline of human reason, the never-ending regress in the series of empirical conditions
has lying before it our experience. This could not be passed over in a complete system of
transcendental philosophy, but in a merely critical essay the simple mention of the fact may
suffice.
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5 DENSITY MATRICES

Topic 5 Density matrices

Problem 5.1
The off-diagonal elements of p satisfy

P12 = Py
It must be possible to write them as

TNy n
Re{pi2} = Re{pn } = 7; Im{p12} = —Im{py } = 2y

1 ' @
prz) _ 1 ’ g + 17Ny _ ™ o+ %ay
P21 2 \rng — Zrny 2 2

In order that tr(p) =1,

1 1 rn,
prutpe=1= pu—g=—pnts=—72
1 TN
P11 _ (2T =%° Lo :1H+%02
P12 3 o 2 2
Therefore,
1H + r
= — —n -
p=ormahte
We are free to constrain [n| = 1 and r > 0 to leave the modulus degree of freedom to r. Use
lpld) 20
L >0 = 1
2 = T
r<l1

Problem 5.2

In the Stern-Gerlach experiment, both up and down spin states have 50% probabilities,

T|+ ) (H

-0
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5 DENSITY MATRICES 5.3

Problem 5.3

(p) = /dr dr’ p(r,r’) (—ihV,6(r — 1))
(p) = ih/dr dr'o(r — ') Vp(r, 1)

(p) = z'h/dr V.p(r, 1)

r'=r

Problem 5.4

If a spin is subject to constant magnetic field H=H-S. Align z with the direction of H,
we get

dp 1
L __H.
dp  ar
—=——H-:
i~ g Homeol
dp TH
nxoy nyox
alr
dt

1 r

=35 I+ 5 Ny0y + Nyoy + 202

1

p(t) = 51[ + g [(ni + ni) (cos(HZt + ¢)o, + sin(H t + 925)0;/) +n,0,
where
t - Y
an(g) =
Problem 5.5
Oy,
h—==HV
825 e
oy, 1 h? 0?
: ——| === Bz |U
ot h( om gz T HEE ¥
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5 DENSITY MATRICES 5.6

(nB)*t”
2m

7 hz 82 , iOM [I,B/t2
_ﬁ<_%@”3“’> GXP(Y)%(” om !
i i B2 (puB't\?> i h? iuB't O i h? 07
_ L)t Wy — oWy + B
eXp( h){ R2m\ k) Th2m R 0z ° h2maz? ° h“ v

, (LB B :
Zem){—i(u £)’ + ti\l’(ﬁra\l’o %MB’x\Ifo}

Oz 0

B't 0 0
Uy + {:F — Wy + — \IIO}
m t

h 2m 2m Oz ot

Therefore

i0 B't?
sy = eXP( ;ﬁ)‘l’o <$¥ ,u2m ,75)

satisfy the Schrodinger equations.

Problem 5.6

As far as the zero-field wavefunctions are concerned,
h2k?
2m

hi2k2
H(q,p) = £puB'q + 5

H=4uB'z +

Since the Wigner transform of the linear potential depends no more than linearly in x, the
only term which survives in the Moyal bracket is the lowest order term.

dp
E _{pa H}M
0p _O0pOH _ 0
ot Op dqg dp
Problem 5.7
— 0
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5 DENSITY MATRICES

5.8
F:—%MZ
S = —kptr (plnp)
TS = —%tr (# exp(—,@H))
TS = %tr (@exp(_ﬁm)
TS — %mz —tr (%% exp(—ﬁH))
TS — %mz _ %% tr [exp(—BH)]
TS:%IHZ—%IHZ:E—F

Problem 5.8

5y ()

ot dt

oS dp d
i —kptr (E lnp) — kBE tr (p)
S

l
i —kptr (_ﬁ[H’ ) lnp)

05 _ iks tr (Hplnp — Hplnp)

P

oS

a - O
Problem 5.9

cyclic permutation and commute pln(p) = In(p)p

Consider only the terms with 1 transposition (n = £1) or none (n = 1).

N

J

. N
ZN = WZ/Hdri ns/a(P) exp (%Z v — rgf)
P %

()

1 N N
ZN%W/Hdrl 1+ Z eXp(%errPJQ)
% J

Pepairwise
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5 DENSITY MATRICES 5.10
VN N 1 N—2 m 2
ZNzWi (2>W/Hdri 1 /drjdrkexp(—ﬁ‘rj—rk‘ ><2)
VN N\ V-2 21 2
ZN% Wi (2>W/drjdrkexp(—p|rj—rk| )
3
vy N\ VAL oAz ?
Iy~ ——— =+ — | —
NN (Q)JVMMV<QW>
N 2 13
gye V(12 A
NIN3N 82V

With this approximation,

1

Fa~—--InZ

5
Vi/iolnZz

V~ —
P 6(8‘/ )T

v V(N 1 NZ )3
b BNV 514 NXg /51?2

Problem 5.10

The reduced density matrix is described by 4 complex numbers, the same number of complex
degrees of freedom as any general density matrix of a single spin. It will thus be possible to
write any single spin density matrix as the reduced matrix of a 2-particle pure state.

Since information about the off-partial-diagonal elements are lost, we cannot deduce a
unique pure entangled 2-spin density matrix from a general density matrix of a single spin.

Problem 5.11
1 hwyal
k
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5 DENSITY MATRICES 5.11

(a)

The density matrix can be diagonalised by number states.

(ax)p = tr (flkPR)

=t | 32 V| = L) 3 Zexp( P ) (e

1 huwy
<(lk>R:tr ZZ,ZeXp( kn)\/_’ n—]. k> nk/|nk/ nk”
k’ n

1 hwk/n
=t | 2 S ep (T )Vl 1) e
which just doesn’t have any diagonal content and so is traceless. Similar

(), = (), =

(b)
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5 DENSITY MATRICES 5.12

(¢)

Analogously to (a), in the number basis a'a' or aa only have nonzero matrix elements where
column/row index differ by 2, whereas p is diagonal. Therefore

Problem 5.12

or = (O‘x + iay)

N[ —

d T ..
5 — —nSlo 0 s — 0epso] — (nu+ )50 ps — o _pso.] + adjoint

dps r)_ Pdd _ Puu Pud :
25— _da, - w1 - dj.
dt 2 " (pdu pdd) ( + (o + ) Puu +ad)

dps U\ [ —2pdga  pud _ 2000 Pud
— = —— Ny + (N +1
dt 2 ( Pdu 2pdd ( ) Pdu _2puu

d uu _ _

gt - _F(nw + 1)puu + anﬂdd
d
% - _Fﬁwpdd + F(ﬁw + l)puu

dt dt 2

Problem 5.13

At equilibrium, the time derivatives vanish

0= _F('ﬁ'w + ]-)puu + Fﬁwpdd

ny
(ﬁw + ]-)puu - ﬁwpdd P = n, + 1
> 1
tr(/)):puu+pdd:1 Pdd =
N, +1
0 I'n +1
= - Ty, 5 u
5 Pud

Pdu = Pud = 0

The density matrix represents a mixed state.
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