Data analysis
In this lecture, Dr. Buscher tries to summarise half of a Part IA compsci course in one hour.
$\chi$-squared
- maximises likelyhood of data given model
- Bayes: $P(model | data) P(data) = P(data | model) P(model)$
- $P(data)$ is fixed and assume the “Prior” $P(model)$ is uniform, so least-squares (minimising $\chi^2$) does maximise Posterior probability $P(model|data)$
Moore-Penrose inverse
- a robust algorithm that generates a pseudoinverse even if there is no unique soluion
- Singular value decmoposition
# compute the pseudoinverse of matrix A Ainv = np.linalg.pinv(A) # matrix multiplication by '@' sign theta = Ainv @ y # singular value decomposition u, s, vh = np.linalg.svd
Pandas
Local optimum: Gradient descent
Levenberg-Marquardt (for least squares)
Conjugate gradient
help(scipy.optimise) # not the easiest thing to read in command line or jupyter. better google
Global maximum: Markov-chain Monte-carlo method
Machine-Learning
Universal approximation theorem: a neural network with 1 hidden layer is enough to approximate any function